全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NGFICA Based Digitization of Historic Inscription Images

DOI: 10.1155/2013/735857

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper addresses the problems encountered during digitization and preservation of inscriptions such as perspective distortion and minimal distinction between foreground and background. In general inscriptions possess neither standard size and shape nor colour difference between the foreground and background. Hence the existing methods like variance based extraction and Fast ICA based analysis fail to extract text from these inscription images. Natural gradient flexible ICA (NGFICA) is a suitable method for separating signals from a mixture of highly correlated signals, as it minimizes the dependency among the signals by considering the slope of the signal at each point. We propose an NGFICA based enhancement of inscription images. The proposed method improves word and character recognition accuracies of the OCR system by 65.3% (from 10.1% to 75.4%) and 54.3% (from 32.4% to 86.7%), respectively. 1. Introduction A significant amount of research has been carried out in the direction of reading inscriptions from monuments around the world. Several methods have been proposed for detection of text, localization and extraction of text from images of inscriptions [1, 2]. But, the problem of text extraction intensifies when the difference in the text (foreground) and the background is very marginal, the background is textured, or the background and foreground are similar. Such is the case of camera-held images of inscriptions at the sites of historical monuments. Figure 1 shows an image of inscription found in world heritage site “Hampi.” These inscriptions are generally found engraved into/projected out from, stone, or other durable materials. However, due to effects of uncontrolled illuminations, wrapping, multilingual text, minimal difference between foreground and background images, and the distortion due to perspective projection as well as the complexity of image background, extracting text from these images is a challenging problem. Figure 1: Inscription found at Hampi. The commercially available Optical Character Recognition (OCR) has very poor recognition accuracy of images of the inscriptions on monuments. The images of English inscriptions from the monuments were passed through the commercial OCR for text extraction, but the OCR failed to recognize these images. These images can be recognized by OCR only after proper enhancement. Fast ICA [3] based enhancement method has given good results for inscription images with a reasonable colour difference between text and the background. Most of the ancient inscriptions do not have such reasonable colour

References

[1]  S. S. Kuo and M. V. Ranganath, “Real time image enhancement for both text and color photo images,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '95), vol. 1, pp. 159–162, October 1995.
[2]  C. Wolf, J.-M. Jolion, and F. Chassaing, “Text localization enhancement and binarization in multimedia documents,” in Proceedings of the 16th International Conference on Pattern Recognition (ICPR '02), vol. 4, pp. 1037–1040, September 2002.
[3]  U. Garain, A. Jain, A. Maity, and B. Chanda, “Machine reading of camera-held low quality text images: an ICA-based image enhancement approach for improving OCR accuracy,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), pp. 1–4, December 2008.
[4]  X. Wen and D. Luo, “Performance comparison research of the fecg signal separation based on the bss algorithm,” Research Journal of Applied Sciences Engineering and Technology, vol. 4, no. 16, pp. 2800–2804, 2012.
[5]  L. Agnihotri and N. Dimitrova, “Text detection for video analysis,” in Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Libraries, pp. 109–113, June 1999.
[6]  X. S. Hua, P. Yin, and H. J. Zhang, “Efficient video text recognition using multiple frame integration,” in Proceedings of the International Conference on Image Processing, vol. 2, pp. 22–25, September 2004.
[7]  K. C. Kim, H. R. Byun, Y. J. Song et al., “Scene text extraction in natural scene images using hierarchical feature combining and verification,” in Proceedings of the 17th International Conference on Pattern Recognition (ICPR '04), vol. 2, pp. 679–682, gbr, August 2004.
[8]  G. R. M. Babu, P. Srimayee, and A. Srikrishna, “Heterogenous images using mathematical morphology,” Journal of Theoretical and Applied Information Technology, vol. 15, no. 5, pp. 795–825, 2008.
[9]  E. Nadernejad, S. Sharifzadeh, and H. Hassanpour, “Edge detection techniques:evaluations and comparisons,” Applied Mathematical Sciences, vol. 2, no. 31, pp. 1507–1520, 2008.
[10]  M. Seeger and C. Dance, Binarising Camera Images for OCR, Xerox Research Centre, Meylan, France, 2000.
[11]  S. Buzykanov, “Enhancement of poor resolution text images in the weighted sobolev space,” in Proceedings of the 19th International Conference on Systems, Signals and Image Processing (IWSSIP '12), pp. 536–539, Vienna, Austria, April 2012.
[12]  B. Gangamma, K. Srikanta Murthy, and A. V. Singh, “Restoration of degraded historical document image,” Journal of Emerging Trends in Computing and Information Sciences, vol. 3, no. 5, pp. 36–39, 2012.
[13]  S. Cherala and P. Rege, “Palm leaf manuscript/color document image enhancement by using improved adaptive binarization method,” in Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP '08), pp. 687–692, December 2008.
[14]  C. L. Tan, R. Cao, and P. Shen, “Restoration of archival documents using a wavelet technique,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 10, pp. 1399–1404, 2002.
[15]  A. V. S. Rao, N. V. Rao, L. P. Reddy, G. Sunil, T. S. K. Prabhu, and A. S. C. S. Sastry, “Adaptive binarization of ancient documents,” in Proceedings of the 2nd International Conference on Machine Vision (ICMV '09), pp. 22–26, December 2009.
[16]  P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1189–1203, 2006.
[17]  P. Chevalier, L. Albera, P. Comon, and Ferreol, “Comparative performance analysis of eight blind source separation methods on radio communications signals,” in Proceedings of the International Joint Conference on Neural Networks, vol. 8, pp. 251–276, July 2004.
[18]  S. Choi, A. Cichocki, and S. I. Amari, “Flexible independent component analysis,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 26, no. 1, pp. 25–38, 2000.
[19]  S. Choi, “Independent component analysis,” in Proceedings of the 12th WSEAS International Conference on Communications, pp. 159–162, July 2008.
[20]  S. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for blind signal separation,” in Advances in Neural Information Processing Systems, vol. 8, pp. 752–763, MIT Press, Cambridge, Mass, USA, 1996.
[21]  S. Amari and S. Douglas, Why Natural Gradient?Brain Style Information Systems, Saitama, Japan, 2001.
[22]  “Optical character recognition,” http://www.onlineocr.net/.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413