全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Extraction of Correlated Sparse Sources from Signal Mixtures

DOI: 10.1155/2013/218651

Full-Text   Cite this paper   Add to My Lib

Abstract:

A blind source separation method is described to extract sources from data mixtures where the underlying sources are sparse and correlated. The approach used is to detect and analyze segments of time where one source exists on its own. The method does not assume independence of sources and probability density functions are not assumed for any of the sources. A comparison is made between the proposed method and the Fast-ICA and Clusterwise PCA methods. It is shown that the proposed method works best for cases where the underlying sources are strongly correlated because Fast-ICA assumes zero correlation between sources and Clusterwise PCA can be sensitive to overlap between sources. However, for cases of sources that are sparse and weakly correlated with each other, there is a tendency for Fast-ICA and Clusterwise PCA to have better performances than the proposed method, the reason being that these methods appear to be more robust to changes in input parameters to the algorithms. In addition, because of the deflationary nature of the proposed method, there is a tendency for estimates to be more affected by noise than Fast-ICA when the number of sources increases. The paper concludes with a discussion concerning potential applications for the proposed method. 1. Introduction One general problem in signal processing is the extraction of individual source signals from measurements that are linear combinations of these sources: where are the mixing coefficients, is the number of sets of measurement data, and there are underlying sources. In the case where both the sources and mixing coefficients are unknown, this problem comes under the heading of blind source separation (BSS). There are many applications in this area [1–8]. There are various approaches to extracting the underlying sources . For example, in Independent Component Analysis (ICA), the aim is to determine a transformation of the data that maximizes the negentropy [9]. In the approach designed in [10], the aim is to minimize the cross-cumulants. Now in some applications, the underlying sources can be approximated as sparse; that is, each source has nonzero values for a finite segment of time, with the other sources having zero values. In practice, this definition can be approximated by each source being dominant over other sources for at least one segment of time. Various specialized BSS methods have been derived for the case of sparse sources [11–18]. In one approach [12], the sparsity of a signal is defined over data points by Assuming two sources, the aim is to find a transformation on the data

References

[1]  J. J. Rieta, F. Castells, C. Sánchez, V. Zarzoso, and J. Millet, “Atrial activity extraction for atrial fibrillation analysis using blind source separation,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 7, pp. 1176–1186, 2004.
[2]  L. Shoker, S. Sanei, and J. Chambers, “Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm,” IEEE Signal Processing Letters, vol. 12, no. 10, pp. 721–724, 2005.
[3]  Z. Dawy, M. Sarkis, J. Hagenauer, and J. C. Mueller, “A novel gene mapping algorithm based on independent component analysis,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), vol. 5, pp. 381–384, Philadelphia, Pa, USA, March 2005.
[4]  D. Nuzillard, S. Bourg, and J. M. Nuzillard, “Model-free analysis of mixtures by NMR using blind source separation,” Journal of Magnetic Resonance, vol. 133, no. 2, pp. 358–363, 1998.
[5]  J. Y. Ren, C. Q. Chang, P. C. W. Fung, J. G. Shen, and F. H. Y. Chan, “Free radical EPR spectroscopy analysis using blind source separation,” Journal of Magnetic Resonance, vol. 166, no. 1, pp. 82–91, 2004.
[6]  W. T. Zhang, S. T. Lou, and Y. L. Zhang, “Robust nonlinear power iteration algorithm for adaptive blind separation of independent signals,” Digital Signal Processing, vol. 20, no. 2, pp. 541–551, 2010.
[7]  M. T. ?zgen, E. E. Kuruo?lu, and D. Herranz, “Astrophysical image separation by blind time-frequency source separation methods,” Digital Signal Processing, vol. 19, no. 2, pp. 360–369, 2009.
[8]  Q. He, S. Su, and R. Du, “Separating mixed multi-component signal with an application in mechanical watch movement,” Digital Signal Processing, vol. 18, no. 6, pp. 1013–1028, 2008.
[9]  A. Hyv?rinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, vol. 13, no. 4-5, pp. 411–430, 2000.
[10]  V. Zarzoso and A. K. Nandi, “Blind separation of independent sources for virtually any source probability density function,” IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2419–2432, 1999.
[11]  M. Babaie-Zadeh, C. Jutten, and A. Mansour, “Sparse ICA via cluster-wise PCA,” Neurocomputing, vol. 69, no. 13–15, pp. 1458–1466, 2006.
[12]  C. Chang, P. C. W. Fung, and Y. S. Hung, “On a sparse component analysis approach to BSS,” in International Conference on Independent Component Analysis and Blind Source Separation (ICA '06), pp. 765–772, Charleston, SC, USA, March 2006.
[13]  P. D. O'Grady, B. A. Pearlmutter, and S. T. Rickard, “Survey of sparse and non-sparse methods in source separation,” International Journal of Imaging Systems and Technology, vol. 15, no. 1, pp. 18–33, 2005.
[14]  F. J. Theis, A. Jung, C. G. Puntonet, and E. W. Lang, “Linear geometric ICA: fundamentals and algorithms,” Neural Computation, vol. 15, no. 2, pp. 419–439, 2003.
[15]  P. Georgiev, F. Theis, and A. Cichocki, “Sparse component analysis and blind source separation of underdetermined mixtures,” IEEE Transactions on Neural Networks, vol. 16, no. 4, pp. 992–996, 2005.
[16]  M. Davies and N. Mitianoudis, “Simple mixture model for sparse overcomplete ICA,” IEE Proceedings: Vision, Image and Signal Processing, vol. 151, no. 1, pp. 35–43, 2004.
[17]  M. S. Woolfson, C. Bigan, J. A. Crowe, and B. R. Hayes-Gill, “Method to separate sparse components from signal mixtures,” Digital Signal Processing, vol. 18, no. 6, pp. 985–1012, 2008.
[18]  Y. Sun, C. Ridge, F. Del Rio, A. J. Shaka, and J. Xin, “Postprocessing and sparse blind source separation of positive and partially overlapped data,” Signal Processing, vol. 91, no. 8, pp. 1838–1851, 2011.
[19]  August 2012, http://www.cis.hut.fi/projects/ica/fastica/.
[20]  “Database for the Identification of Systems (DaISy),” August 2012, http://homes.esat.kuleuven.be/~smc/daisy/.
[21]  Y. Xiang, S. K. Ng, and V. K. Nguyen, “Blind separation of mutually correlated sources using precoders,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 82–90, 2010.
[22]  W. Naanaa and J. M. Nuzillard, “Blind source separation of positive and partially correlated data,” Signal Processing, vol. 85, no. 9, pp. 1711–1722, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133