全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cell Transplantation and “Stem Cell Therapy” in the Treatment of Myopathies: Many Promises in Mice, Few Realities in Humans

DOI: 10.5402/2013/582689

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myopathies produce deficits in skeletal muscle function and, in some cases, progressive and irreversible loss of skeletal muscles. The transplantation of myogenic cells, that is, cells able to differentiate into myofibers, is an experimental strategy for the potential treatment of some of these diseases. The objectives pursued by the transplantation of these cells are essentially three: (a) the fusion with the patient’s myofibers to obtain the expression of therapeutic proteins into them, (b) the neoformation of new functional myofibers in skeletal muscles that were too degenerated by the progressive degeneration, and (c) the formation of a new pool of healthy donor-derived satellite cells. Although the repertoire of myogenic cells appears to have expanded in recent years, myoblasts are the only cells that have been demonstrated to engraft in humans. The present work aims to make a comprehensive review of the subject, from its beginnings to recent advances, including the preclinical experience in different animal models and recent clinical findings. 1. Introduction Myopathies are characterized by different degrees of localized or generalized muscle weakness from muscular etiology. This is the common symptom in a clinical picture that varies from an entity to another. Myopathies are divided into acquired and inherited; the second group is divided into main groups such as muscular dystrophies, metabolic myopathies, mitochondrial myopathies, and congenital structural myopathies. Among this group of diseases, Duchenne muscular dystrophy (DMD) probably concentrates most of the efforts for developing new therapeutic strategies. For this reason, this entity will be the focus of this review. Many considerations, however, would apply to other myopathies. The motives by which DMD draws a lot of attention are the relative frequency of the illness for a rare disease (50 cases per million is the prevalence for the male population) and its ominous prognosis: progressive skeletal muscle degeneration in the limbs and trunk, evolving during infancy and puberty, leading to almost a complete loss of skeletal muscles in those regions, restrictive respiratory insufficiency, and ultimately death by respiratory or cardiac complications. In the natural evolution of the disease, most patients die before the age of 20. Progress in supportive care, essentially noninvasive mechanical ventilation, assisted coughing, and cardioprotective medication, have made half of these patients now reach 40 years of life in advanced countries [1]. Contrasting with the improvement in prolonging

References

[1]  Y. Ishikawa, T. Miura, Y. Ishikawa et al., “Duchenne muscular dystrophy: survival by cardio-respiratory interventions,” Neuromuscular Disorders, vol. 21, no. 1, pp. 47–51, 2011.
[2]  J. D. Gumerson and D. E. Michele, “The dystrophin-glycoprotein complex in the prevention of muscle damage,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 210797, 13 pages, 2011.
[3]  D. Skuk, M. Goulet, and J. P. Tremblay, “Preservation of muscle spindles in a 27-year-old Duchenne muscular dystrophy patient: importance for regenerative medicine strategies,” Muscle & Nerve, vol. 41, no. 5, pp. 729–730, 2010.
[4]  B. H. Lipton and E. Schultz, “Developmental fate of skeletal muscle satellite cells,” Science, vol. 205, no. 4412, pp. 1292–1294, 1979.
[5]  D. J. Watt, K. Lambert, and J. E. Morgan, “Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse,” Journal of the Neurological Sciences, vol. 57, no. 2-3, pp. 319–331, 1982.
[6]  D. Yaffe and M. Feldman, “The formation of hybrid multinucleated muscle fibers from myoblasts of different genetic origin,” Developmental Biology, vol. 11, no. 2, pp. 300–317, 1965.
[7]  T. A. Partridge, J. E. Morgan, G. R. Coulton, E. P. Hoffman, and L. M. Kunkel, “Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts,” Nature, vol. 337, no. 6203, pp. 176–179, 1989.
[8]  G. Karpati, Y. Pouliot, E. Zubrzycka-Gaarn et al., “Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation,” American Journal of Pathology, vol. 135, no. 1, pp. 27–32, 1989.
[9]  I. Kinoshita, J.-T. Vilquin, B. Guerette, I. Asselin, R. Roy, and J. P. Tremblay, “Very efficient myoblast allotransplantation in mice under FK506 immunosuppression,” Muscle & Nerve, vol. 17, no. 12, pp. 1407–1415, 1994.
[10]  J. R. Mendell, J. T. Kissel, A. A. Amato et al., “Myoblast transfer in the treatment of Duchenne's muscular dystrophy,” New England Journal of Medicine, vol. 333, no. 13, pp. 832–838, 1995.
[11]  D. Skuk, M. Goulet, B. Roy et al., “Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells,” Journal of Neuropathology and Experimental Neurology, vol. 65, no. 4, pp. 371–386, 2006.
[12]  D. Skuk, M. Goulet, B. Roy et al., “First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up,” Neuromuscular Disorders, vol. 17, no. 1, pp. 38–46, 2007.
[13]  D. Skuk, B. Roy, M. Goulet et al., “Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells,” Molecular Therapy, vol. 9, no. 3, pp. 475–482, 2004.
[14]  G. K. Pavlath, K. Rich, S. G. Webster, and H. M. Blau, “Localization of muscle gene products in nuclear domains,” Nature, vol. 337, no. 6207, pp. 570–573, 1989.
[15]  E. Ralston and Z. W. Hall, “Restricted distribution of mRNA produced from a single nucleus in hybrid myotubes,” Journal of Cell Biology, vol. 119, no. 5, pp. 1063–1068, 1992.
[16]  Z. W. Hall and E. Ralston, “Nuclear domains in muscle cells,” Cell, vol. 59, no. 5, pp. 771–772, 1989.
[17]  F. Chretien, P. A. Dreyfus, C. Christov et al., “In vivo fusion of circulating fluorescent cells with dystrophin-deficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression,” American Journal of Pathology, vol. 166, no. 6, pp. 1741–1748, 2005.
[18]  E. Gussoni, H. M. Blau, and L. M. Kunkel, “The fate of individual myoblasts after transplantation into muscles of DMD patients,” Nature Medicine, vol. 3, no. 9, pp. 970–974, 1997.
[19]  H. S. Alameddine, J. P. Louboutin, M. Dehaupas, A. Sebille, and M. Fardeau, “Functional recovery induced by satellite cell grafts in irreversibly injured muscles,” Cell Transplantation, vol. 3, no. 1, pp. 3–14, 1994.
[20]  A. Wernig, M. Zweyer, and A. Irintchev, “Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles,” Journal of Physiology, vol. 522, no. 2, pp. 333–345, 2000.
[21]  A. Wernig, A. Irintchev, and G. Lange, “Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression,” Journal of Physiology, vol. 484, no. 2, pp. 493–504, 1995.
[22]  A. Irintchev, M. Langer, M. Zweyer, R. Theisen, and A. Wernig, “Functional improvement of damaged adult mouse muscle by implantation of primary myoblasts,” Journal of Physiology, vol. 500, no. 3, pp. 775–785, 1997.
[23]  R. Vracko and E. P. Benditt, “Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries,” Journal of Cell Biology, vol. 55, no. 2, pp. 406–419, 1972.
[24]  A. Irintchev, J. D. Rosenblatt, M. J. Cullen, M. Zweyer, and A. Wernig, “Ectopic skeletal muscles derived from myoblasts implanted under the skin,” Journal of Cell Science, vol. 111, no. 22, pp. 3287–3297, 1998.
[25]  I. Kinoshita, J. Vilquin, and J. P. Tremblay, “Mechanism of increasing dystrophin-positive myofibers by myoblast transplantation: study using mdx/β-galactosidase transgenic mice,” Acta Neuropathologica, vol. 91, no. 5, pp. 489–493, 1996.
[26]  A. Satoh, C. Labrecque, and J. P. Tremblay, “Myotubes can be formed within implanted adipose tissue,” Transplantation Proceedings, vol. 24, no. 6, pp. 3017–3019, 1992.
[27]  D. F. Pisani, C. A. Dechesne, S. Sacconi et al., “Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential,” Stem Cells, vol. 28, no. 4, pp. 753–764, 2010.
[28]  Y. Huang, R. G. Dennis, L. Larkin, and K. Baar, “Rapid formation of functional muscle in vitro using fibrin gels,” Journal of Applied Physiology, vol. 98, no. 2, pp. 706–713, 2005.
[29]  T. Okano and T. Matsuda, “Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture,” Cell Transplantation, vol. 7, no. 5, pp. 435–442, 1998.
[30]  T. Yokota, Q. Lu, J. E. Morgan et al., “Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration,” Journal of Cell Science, vol. 119, no. 13, pp. 2679–2687, 2006.
[31]  S.-N. Yao and K. Kurachi, “Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells,” Journal of Cell Science, vol. 105, no. 4, pp. 957–963, 1993.
[32]  J. G. Gross and J. E. Morgan, “Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury,” Muscle & Nerve, vol. 22, no. 2, pp. 174–185, 1999.
[33]  X. Xu, Z. Yang, Q. Liu, and Y. Wang, “In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts,” Molecular Therapy, vol. 18, no. 4, pp. 835–842, 2010.
[34]  L. Heslop, J. R. Beauchamp, S. Tajbakhsh, M. E. Buckingham, T. A. Partridge, and P. S. Zammit, “Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZ/+ mouse,” Gene Therapy, vol. 8, no. 10, pp. 778–783, 2001.
[35]  D. Skuk, M. Paradis, M. Goulet, P. Chapdelaine, D. M. Rothstein, and J. P. Tremblay, “Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells,” Molecular Therapy, vol. 18, no. 9, pp. 1689–1697, 2010.
[36]  K. Brimah, J. Ehrhardt, V. Mouly, G. S. Butler-Browne, T. A. Partridge, and J. E. Morgan, “Human muscle precursor cell regeneration in the mouse host is enhanced by growth factors,” Human Gene Therapy, vol. 15, no. 11, pp. 1109–1124, 2004.
[37]  J. Ehrhardt, K. Brimah, C. Adkin, T. Partridge, and J. Morgan, “Human muscle precursor cells give rise to functional satellite cells in vivo,” Neuromuscular Disorders, vol. 17, no. 8, pp. 631–638, 2007.
[38]  E. Negroni, I. Riederer, S. Chaouch et al., “In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study,” Molecular Therapy, vol. 17, no. 10, pp. 1771–1778, 2009.
[39]  K. Vauchez, J. Marolleau, M. Schmid et al., “Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities,” Molecular Therapy, vol. 17, no. 11, pp. 1948–1958, 2009.
[40]  A. Dellavalle, M. Sampaolesi, R. Tonlorenzi et al., “Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells,” Nature Cell Biology, vol. 9, no. 3, pp. 255–267, 2007.
[41]  D. Montarras, J. Morgan, C. Colins et al., “Developmental biology: direct isolation of satellite cells for skeletal muscle regeneration,” Science, vol. 309, no. 5743, pp. 2064–2067, 2005.
[42]  T. A. Partridge, M. Grounds, and J. C. Sloper, “Evidence of fusion between host and donor myoblasts in skeletal muscle grafts,” Nature, vol. 273, no. 5660, pp. 306–308, 1978.
[43]  P. S. Zammit, L. Heslop, V. Hudon et al., “Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers,” Experimental Cell Research, vol. 281, no. 1, pp. 39–49, 2002.
[44]  R. Sambasivan, R. Yao, A. Kissenpfennig et al., “Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration,” Development, vol. 138, no. 17, pp. 3647–3656, 2011.
[45]  C. Lepper, T. A. Partridge, and C. Fan, “An absolute requirement for pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration,” Development, vol. 138, no. 17, pp. 3639–3646, 2011.
[46]  M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, “Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration,” Development, vol. 138, no. 17, pp. 3625–3637, 2011.
[47]  M. R. Lewis, “Rhythmical contraction of the skeletal muscle tissue observed in tissue culture,” American Journal of Physiology, vol. 38, pp. 153–161, 1915.
[48]  Z. Yablonka-Reuveni and M. Nameroff, “Temporal differences in desmin expression between myoblasts from embryonic and adult chicken skeletal muscle,” Differentiation, vol. 45, no. 1, pp. 21–28, 1990.
[49]  J. Wang and I. Conboy, “Embryonic vs. adult myogenesis: challenging the “regeneration recapitulates development” paradigm,” Journal of Molecular Cell Biology, vol. 2, no. 1, pp. 1–4, 2010.
[50]  C. Lepper, S. J. Conway, and C. Fan, “Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements,” Nature, vol. 460, no. 7255, pp. 627–631, 2009.
[51]  G. Cossu and M. Molinaro, “Chapter 9 cell heterogeneity in the myogenic lineage,” Current Topics in Developmental Biology C, vol. 23, pp. 185–208, 1987.
[52]  A. Mauro, “Satellite cell of skeletal muscle fibers,” The Journal of Biophysical and Biochemical Cytology, vol. 9, pp. 493–495, 1961.
[53]  B. M. Carlson, “Muscle regeneration in amphibians and mammals: passing the torch,” Developmental Dynamics, vol. 226, no. 2, pp. 167–181, 2003.
[54]  S. B. Charge and M. A. Rudnicki, “Cellular and molecular regulation of muscle regeneration,” Physiological Reviews, vol. 84, no. 1, pp. 209–238, 2004.
[55]  R. N. Cooper, S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham, and G. S. Butler-Browne, “In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle,” Journal of Cell Science, vol. 112, no. 17, pp. 2895–2901, 1999.
[56]  Z. Yablonka-Reuveni and A. J. Rivera, “Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers,” Developmental Biology, vol. 164, no. 2, pp. 588–603, 1994.
[57]  P. S. Zammit, J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge, and J. R. Beauchamp, “Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?” Journal of Cell Biology, vol. 166, no. 3, pp. 347–357, 2004.
[58]  C. A. Collins, I. Olsen, P. S. Zammit et al., “Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche,” Cell, vol. 122, no. 2, pp. 289–301, 2005.
[59]  I. R. Konigsberg, “The differentiation of cross-striated myofibrils in short term cell culture,” Experimental Cell Research, vol. 21, no. 2, pp. 414–420, 1960.
[60]  J. T. Vilquin, J.-P. Marolleau, A. Hagege, P. Menasche, M. Fiszman, and K. Schwartz, “Cell transplantation for post-ischemic heart failure,” Archives des Maladies du Coeur et des Vaisseaux, vol. 95, no. 12, pp. 1219–1225, 2002.
[61]  D. Skuk and J. P. Tremblay, “Myoblast transplantation: the current status of a potential therapeutic tool for myopathies,” Journal of Muscle Research and Cell Motility, vol. 24, no. 4–6, pp. 285–300, 2003.
[62]  C. L. Pin and P. A. Merrifield, “Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles,” Developmental Biology, vol. 188, no. 1, pp. 147–166, 1997.
[63]  M. Cantini, M. L. Massimino, C. Catani, R. Rizzuto, M. Brini, and U. Carraro, “Gene transfer into satellite cell from regenerating muscle: bupivacaine allows β-gal transfection and expression in vitro and in vivo,” In Vitro Cellular and Developmental Biology-Animal, vol. 30, no. 2, pp. 131–133, 1994.
[64]  J. N. Kornegay, S. M. Prattis, D. J. Bogan, et al., “Results of myoblast transplantation in a canine model of muscle injury,” in Duchenne Muscular Dystrophy: Animal Models and Genetic Manipulation, pp. 203–212, Raven Press, New York, NY, USA, 1992.
[65]  H. Ito, J. Vilquin, D. Skuk et al., “Myoblast transplantation in non-dystrophic dog,” Neuromuscular Disorders, vol. 8, no. 2, pp. 95–110, 1998.
[66]  D. Skuk, M. Goulet, M. Paradis, and J. P. Tremblay, “Myoblast transplantation: techniques in nonhuman primates as a bridge to clinical trials,” in Methods in BioengIneerIng: Cell Transplantation, pp. 219–236, Artech House, Boston, Mass, USA, 2011.
[67]  B. Coulet, F. Lacombe, C. Lazerges et al., “Short- or long-term effects of adult myoblast transfer on properties of reinnervated skeletal muscles,” Muscle & Nerve, vol. 33, no. 2, pp. 254–264, 2006.
[68]  M. César, S. Roussanne-Domergue, B. Coulet et al., “Transplantation of adult myoblasts or adipose tissue precursor cells by high-density injection failed to improve reinnervated skeletal muscles,” Muscle & Nerve, vol. 37, no. 2, pp. 219–230, 2008.
[69]  N. Holzer, S. Hogendoorn, L. Zürcher et al., “Autologous transplantation of porcine myogenic precursor cells in skeletal muscle,” Neuromuscular Disorders, vol. 15, no. 3, pp. 237–244, 2005.
[70]  Z. Qu-Petersen, B. Deasy, R. Jankowski et al., “Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration,” Journal of Cell Biology, vol. 157, no. 5, pp. 851–864, 2002.
[71]  M. Sampaolesi, Y. Torrente, A. Innocenzi et al., “Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts,” Science, vol. 301, no. 5632, pp. 487–492, 2003.
[72]  M. Sampaolesi, S. Blot, G. D'Antona et al., “Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs,” Nature, vol. 444, no. 7119, pp. 574–579, 2006.
[73]  M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008.
[74]  B. Zheng, B. Cao, M. Crisan et al., “Prospective identification of myogenic endothelial cells in human skeletal muscle,” Nature Biotechnology, vol. 25, no. 9, pp. 1025–1034, 2007.
[75]  R. Benchaouir, M. Meregalli, A. Farini et al., “Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice,” Cell Stem Cell, vol. 1, no. 6, pp. 646–657, 2007.
[76]  K. J. Mitchell, A. Pannérec, B. Cadot et al., “Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development,” Nature Cell Biology, vol. 12, no. 3, pp. 257–266, 2010.
[77]  K. Liadaki, J. C. Casar, M. Wessen et al., “Beta4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle,” Journal of Histochemistry and Cytochemistry, vol. 60, no. 1, pp. 31–44, 2012.
[78]  A. Pannerec, G. Marazzi, and D. Sassoon, “Stem cells in the hood: the skeletal muscle niche,” Trends in Molecular Medicine, vol. 18, no. 10, pp. 599–606, 2012.
[79]  M. D. Grounds, “Skeletal muscle precursors do not arise from bone marrow cells,” Cell and Tissue Research, vol. 234, no. 3, pp. 713–722, 1983.
[80]  E. Schultz, D. L. Jaryszak, M. C. Gibson, and D. J. Albright, “Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle,” Journal of Muscle Research and Cell Motility, vol. 7, no. 4, pp. 361–367, 1986.
[81]  S. Wakeford, D. J. Watt, and T. A. Partridge, “X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD,” Muscle & Nerve, vol. 14, no. 1, pp. 42–50, 1990.
[82]  B. Weller, G. Karpati, S. Lehnert, S. Carpenter, B. Ajdukovic, and P. Holland, “Inhibition of myosatellite cell proliferation by gamma irradiation does not prevent the age-related increase of the number of dystrophin-positive fibers in soleus muscles of mdx female heterozygote mice,” American Journal of Pathology, vol. 138, no. 6, pp. 1497–1502, 1991.
[83]  J. D. Rosenblatt and D. J. Parry, “Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle,” Journal of Applied Physiology, vol. 73, no. 6, pp. 2538–2543, 1992.
[84]  T. A. Robertson, M. D. Grounds, and J. M. Papadimitriou, “Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation,” Journal of Anatomy, vol. 181, no. 2, pp. 265–276, 1992.
[85]  G. Ferrari, G. Cusella-De Angelis, M. Coletta et al., “Muscle regeneration by bone marrow-derived myogenic progenitors,” Science, vol. 279, no. 5356, pp. 1528–1530, 1998.
[86]  E. Gussoni, Y. Soneoka, C. D. Strickland et al., “Dystrophin expression in the mdx mouse restored by stem cell transplantation,” Nature, vol. 401, no. 6751, pp. 390–394, 1999.
[87]  G. Ferrari, A. Stornaiuolo, and F. Mavilio, “Failure to correct murine muscular dystrophy,” Nature, vol. 411, no. 6841, pp. 1014–1015, 2001.
[88]  S. Corti, S. Strazzer, R. Del Bo et al., “A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse,” Experimental Cell Research, vol. 277, no. 1, pp. 74–85, 2002.
[89]  C. Dell'Agnola, Z. Wang, R. Storb et al., “Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs,” Blood, vol. 104, no. 13, pp. 4311–4318, 2004.
[90]  E. Gussoni, R. R. Bennett, K. R. Muskiewicz et al., “Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation,” Journal of Clinical Investigation, vol. 110, no. 6, pp. 807–814, 2002.
[91]  P. B. Kang, H. G. W. Lidov, A. J. White et al., “Inefficient dystrophin expression after cord blood transplantation in duchenne muscular dystrophy,” Muscle & Nerve, vol. 41, no. 6, pp. 746–750, 2010.
[92]  F. D. Camargo, R. Green, Y. Capetenaki, K. A. Jackson, and M. A. Goodell, “Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates,” Nature Medicine, vol. 9, no. 12, pp. 1520–1527, 2003.
[93]  G. Wernig, V. Janzen, R. Sch?fer et al., “The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11852–11857, 2005.
[94]  L. De Angelis, L. Berghella, M. Coletta et al., “Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration,” Journal of Cell Biology, vol. 147, no. 4, pp. 869–877, 1999.
[95]  R. Tonlorenzi, A. Dellavalle, E. Schnapp, G. Cossu, and M. Sampaolesi, “Isolation and characterization of mesoangioblasts from mouse, dog, and human tissues,” Current protocols in stem cell biology, vol. 2, Article ID 2B1, 2007.
[96]  K. E. Davies and M. D. Grounds, “Treating muscular dystrophy with stem cells?” Cell, vol. 127, no. 7, pp. 1304–1306, 2006.
[97]  M. D. Grounds and K. E. Davies, “The allure of stem cell therapy for muscular dystrophy,” Neuromuscular Disorders, vol. 17, no. 3, pp. 206–208, 2007.
[98]  A. H. Bretag, “Stem cell treatment of dystrophic dogs,” Nature, vol. 450, no. 7173, pp. E23–E25, 2007.
[99]  F. S. Tedesco, A. Dellavalle, J. Diaz-Manera, G. Messina, and G. Cossu, “Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 11–19, 2010.
[100]  K. K. Hirschi and P. A. D'Amore, “Pericytes in the microvasculature,” Cardiovascular Research, vol. 32, no. 4, pp. 687–698, 1996.
[101]  M. J. Doherty, B. A. Ashton, S. Walsh, J. N. Beresford, M. E. Grant, and A. E. Canfield, “Vascular pericytes express osteogenic potential in vitro and in vivo,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 828–838, 1998.
[102]  C. Farrington-Rock, N. J. Crofts, M. J. Doherty, B. A. Ashton, C. Griffin-Jones, and A. E. Canfield, “Chondrogenic and adipogenic potential of microvascular pericytes,” Circulation, vol. 110, no. 15, pp. 2226–2232, 2004.
[103]  I. Kirillova, E. Gussoni, D. J. Goldhamer, and Z. Yablonka-Reuveni, “Myogenic reprogramming of retina-derived cells following their spontaneous fusion with myotubes,” Developmental Biology, vol. 311, no. 2, pp. 449–463, 2007.
[104]  A. Dellavalle, G. Maroli, D. Covarello et al., “Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells,” Nature Communications, vol. 2, no. 1, p. 499, 2011.
[105]  A. B. Borisov, “Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology?” Wound Repair and Regeneration, vol. 7, no. 1, pp. 26–35, 1999.
[106]  H. Puchtler, F. Sweat, M. S. Terry, and H. M. Conner, “Investigation of staining, polarization and fluorescence-microscopic properties of myoendothelial cells,” Journal of Microscopy, vol. 89, no. 1, pp. 95–104, 1969.
[107]  A. H. Yin, S. Miraglia, E. D. Zanjani et al., “AC133, a novel marker for human hematopoietic stem and progenitor cells,” Blood, vol. 90, no. 12, pp. 5002–5012, 1997.
[108]  Y. Torrente, M. Belicchi, M. Sampaolesi et al., “Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle,” Journal of Clinical Investigation, vol. 114, no. 2, pp. 182–195, 2004.
[109]  Y. Torrente, M. Belicchi, C. Marchesi et al., “Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients,” Cell Transplantation, vol. 16, no. 6, pp. 563–577, 2007.
[110]  Z. Qu, L. Balkir, J. C. T. Van Deutekom, P. D. Robbins, R. Pruchnic, and J. Huard, “Development of approaches to improve cell survival in myoblast transfer therapy,” Journal of Cell Biology, vol. 142, no. 5, pp. 1257–1267, 1998.
[111]  G. M. Mueller, T. O'Day, J. F. Watchko, and M. Ontell, “Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice,” Human Gene Therapy, vol. 13, no. 9, pp. 1081–1090, 2002.
[112]  A. Asakura, P. Seale, A. Girgis-Gabardo, and M. A. Rudnicki, “Myogenic specification of side population cells in skeletal muscle,” Journal of Cell Biology, vol. 159, no. 1, pp. 123–134, 2002.
[113]  R. Sarig, Z. Baruchi, O. Fuchs, U. Nudel, and D. Yaffe, “Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres,” Stem Cells, vol. 24, no. 7, pp. 1769–1778, 2006.
[114]  D. N. Landon, “Skeletal muscle: normal morphology, development and innervation,” in Skeletal Muscle Pathology, pp. 1–87, Churchil Livingstone, Edinburgh, UK, 1982.
[115]  D. Skuk and J. P. Tremblay, “Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data,” Expert Opinion on Biological Therapy, vol. 11, no. 3, pp. 359–374, 2011.
[116]  A. M. Neumeyer, D. M. DiGregorio, and R. H. Brown Jr., “Arterial delivery of myoblasts to skeletal muscle,” Neurology, vol. 42, no. 12, pp. 2258–2262, 1992.
[117]  T. A. Partridge, “Invited review: myoblast transfer: a possible therapy for inherited myopathies?” Muscle & Nerve, vol. 14, no. 3, pp. 197–212, 1991.
[118]  E. Bachrach, A. L. Perez, Y. Choi et al., “Muscle engraftment of myogenic progenitor cells following intraarterial transplantation,” Muscle & Nerve, vol. 34, no. 1, pp. 44–52, 2006.
[119]  Y. Torrente, J.-P. Tremblay, F. Pisati et al., “Intraarterial injection of muscle-derived CD34+Sca-1+ stem cells restores dystrophin in mdx mice,” Journal of Cell Biology, vol. 152, no. 2, pp. 335–348, 2001.
[120]  D. Skuk, M. Goulet, and J. P. Tremblay, “Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure,” Cell Transplantation, vol. 15, no. 7, pp. 659–663, 2006.
[121]  D. Skuk, M. Goulet, B. Roy, and J. P. Tremblay, “Myoblast transplantation in whole muscle of nonhuman primates,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 3, pp. 197–206, 2000.
[122]  D. Skuk, M. Goulet, B. Roy, and J. P. Tremblay, “Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans,” Experimental Neurology, vol. 175, no. 1, pp. 112–126, 2002.
[123]  D. Skuk, M. Goulet, and J. P. Tremblay, “Use of repeating dispensers to increase the efficiency of the intramuscular myogenic cell injection procedure,” Cell Transplantation, vol. 15, no. 7, pp. 659–663, 2006.
[124]  D. Skuk, “Myoblast transplantion for inherited myopathies: a clinical approach,” Expert Opinion on Biological Therapy, vol. 4, no. 12, pp. 1871–1885, 2004.
[125]  D. Skuk, M. Goulet, and J. P. Tremblay, “Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 9, pp. 770–778, 2011.
[126]  D. Skuk, M. Goulet, and J. P. Tremblay, “Electroporation as method to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates,” Jornal of Neuropathololgy and Experimenbtal Neurology, vol. 72, no. 8, pp. 723–734, 2013.
[127]  P. D. Moens, M. C. Van-Schoor, and G. Maréchal, “Lack of myoblasts migration between transplanted and host muscles of mdx and normal mice,” Journal of Muscle Research and Cell Motility, vol. 17, no. 1, pp. 37–43, 1996.
[128]  T. A. Robertson, M. A. L. Maley, M. D. Grounds, and J. M. Papadimitriou, “The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis,” Experimental Cell Research, vol. 207, no. 2, pp. 321–331, 1993.
[129]  R. Bischoff, “Chemotaxis of skeletal muscle satellite cells,” Developmental Dynamics, vol. 208, no. 4, pp. 505–515, 1997.
[130]  Y. Tokura, Y. Nakayama, S. Fukada et al., “Muscle injury-induced thymosin β4 acts as a chemoattractant for myoblasts,” Journal of Biochemistry, vol. 149, no. 1, pp. 43–48, 2011.
[131]  A. L. Siegel, K. Atchison, K. E. Fisher, G. E. Davis, and D. D. W. Cornelison, “3D timelapse analysis of muscle satellite cell motility,” Stem Cells, vol. 27, no. 10, pp. 2527–2538, 2009.
[132]  S. P. Quenneville, P. Chapdelaine, D. Skuk et al., “Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy: human cells and primate models,” Molecular Therapy, vol. 15, no. 2, pp. 431–438, 2007.
[133]  E. El Fahime, P. Mills, J. F. Lafreniere, Y. Torrente, and J. P. Tremblay, “The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation,” Experimental Cell Research, vol. 280, no. 2, pp. 169–178, 2002.
[134]  J. F. Lafreniere, P. Mills, M. Bouchentouf, and J. P. Tremblay, “Interleukin-4 improves the migration of human myogenic precursor cells in vitro and in vivo,” Experimental Cell Research, vol. 312, no. 7, pp. 1127–1141, 2006.
[135]  P. Mills, J. C. Dominique, J. F. Lafrenière, M. Bouchentouf, and J. P. Tremblay, “A synthetic mechano growth factor E peptide enhances myogenic precursor cell transplantation success,” American Journal of Transplantation, vol. 7, no. 10, pp. 2247–2259, 2007.
[136]  P. Mills, J. Lafrenière, B. F. Benabdallah, E. M. El Fahime, and J. Tremblay, “A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor,” Experimental Cell Research, vol. 313, no. 3, pp. 527–537, 2007.
[137]  J. F. Lafreniere, M. C. Caron, D. Skuk, M. Goulet, A. R. Cheikh, and J. P. Tremblay, “Growth factor coinjection improves the migration potential of monkey myogenic precursors without affecting cell transplantation success,” Cell Transplantation, vol. 18, no. 7, pp. 719–730, 2009.
[138]  C. Pichavant, C. Gargioli, and J. P. Tremblay, “Intramuscular transplantation of muscle precursor cells over-expressing MMP-9 improves transplantation success,” PLOS Currents, vol. 3, Article ID RRN1275, 2011.
[139]  J. T. Vilquin, I. Asselin, B. Guerette, I. Kinoshita, R. Roy, and J. P. Tremblay, “Successful myoblast allotransplantation in mdx mice using rapamycin,” Transplantation, vol. 59, no. 3, pp. 422–426, 1995.
[140]  C. Lazerges, P. Daussin, B. Coulet et al., “Transplantation of primary satellite cells improves properties of reinnervated skeletal muscles,” Muscle & Nerve, vol. 29, no. 2, pp. 218–226, 2004.
[141]  M. Bouchentouf, B. F. Benabdallah, P. Bigey, T. M. Yau, D. Scherman, and J. P. Tremblay, “Vascular endothelial growth factor reduced hypoxia-induced death of human myoblasts and improved their engraftment in mouse muscles,” Gene Therapy, vol. 15, no. 6, pp. 404–414, 2008.
[142]  J. G. Gross, G. Bou-Gharios, and J. E. Morgan, “Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery,” Cell and Tissue Research, vol. 298, no. 2, pp. 371–375, 1999.
[143]  D. Skuk, B. Roy, M. Goulet, and J. P. Tremblay, “Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle,” Experimental Neurology, vol. 155, no. 1, pp. 22–30, 1999.
[144]  B. M. Carlson, “Muscle regeneration in animal models,” in Skeletal Muscle Repair and Regeneration, pp. 163–179, Springer, Dordrecht, The Netherlands, 2008.
[145]  I. Kinoshita, J. T. Vilquin, I. Asselin, J. Chamberlain, and J. P. Tremblay, “Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin produced only a relatively small increase of dystrophin- positive membrane,” Muscle & Nerve, vol. 21, no. 1, pp. 91–103, 1998.
[146]  P. L. Richard, C. Gosselin, T. Laliberté et al., “A first semimanual device for clinical intramuscular repetitive cell injections,” Cell Transplantation, vol. 19, no. 1, pp. 67–78, 2010.
[147]  J. R. Beauchamp, J. E. Morgan, C. N. Pagel, and T. A. Partridge, “Quantitative studies of efficacy of myoblast transplantation,” Muscle & Nerve, supplement 4, p. S261, 1994.
[148]  J. Huard, G. Acsadi, A. Jani, B. Massie, and G. Karpati, “Gene transfer into skeletal muscles by isogenic myoblasts,” Human Gene Therapy, vol. 5, no. 8, pp. 949–958, 1994.
[149]  B. Guérette, D. Skuk, F. Célestin et al., “Prevention by anti-LFA-1 of acute myoblast death following transplantation,” Journal of Immunology, vol. 159, no. 5, pp. 2522–2531, 1997.
[150]  J. R. Beauchamp, J. E. Morgan, C. N. Pagel, and T. A. Partridge, “Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source,” Journal of Cell Biology, vol. 144, no. 6, pp. 1113–1121, 1999.
[151]  D. Skuk, N. J. Caron, M. Goulet, B. Roy, and J. P. Tremblay, “Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 9, pp. 951–967, 2003.
[152]  I. Riederer, E. Negroni, A. Bigot et al., “Heat shock treatment increases engraftment of transplanted human myoblasts into immunodeficient mice,” Transplantation Proceedings, vol. 40, no. 2, pp. 624–630, 2008.
[153]  J. C. Cousins, K. J. Woodward, J. G. Gross, T. A. Partridge, and J. E. Morgan, “Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal,” Journal of Cell Science, vol. 117, no. 15, pp. 3259–3269, 2004.
[154]  S. I. Hodgetts, M. W. Beilharz, A. A. Scalzo, and M. D. Grounds, “Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or NK1.1+ cells,” Cell Transplantation, vol. 9, no. 4, pp. 489–502, 2000.
[155]  S. I. Hodgetts and M. D. Grounds, “Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5,” Immunology and Cell Biology, vol. 79, no. 3, pp. 231–239, 2001.
[156]  L. M. Sammels, E. Bosio, C. T. Fragall, M. D. Grounds, N. Van Rooijen, and M. W. Beilharz, “Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy,” Transplantation, vol. 77, no. 12, pp. 1790–1797, 2004.
[157]  B. Guérette, I. Asselin, D. Skuk, M. Entman, and J. P. Tremblay, “Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation,” Cell Transplantation, vol. 6, no. 2, pp. 101–107, 1997.
[158]  P. F. Lesault, M. Theret, M. Magnan, et al., “Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle,” PLoS One, vol. 7, no. 10, Article ID e46698, 2012.
[159]  D. Skuk, N. Caron, M. Goulet, B. Roy, F. Espinosa, and J. P. Tremblay, “Dynamics of the early immune cellular reactions after myogenic cell transplantation,” Cell Transplantation, vol. 11, no. 7, pp. 671–681, 2002.
[160]  M. Bouchentouf, B. F. Benabdallah, J. Rousseau, L. M. Schwartz, and J. P. Tremblay, “Induction of anoikis following myoblast transplantation into SCID mouse muscles requires the Bit1 and FADD pathways,” American Journal of Transplantation, vol. 7, no. 6, pp. 1491–1505, 2007.
[161]  M. Bouchentouf, B. F. Benabdallah, and J. P. Tremblay, “Myoblast survival enhancement and transplantation success improvement by heat-shock treatment in MDX mice,” Transplantation, vol. 77, no. 9, pp. 1349–1356, 2004.
[162]  R. Fakhfakh, Y. Lamarre, D. Skuk, and J. P. Tremblay, “Losartan enhances the success of myoblast transplantation,” Cell Transplantation, vol. 21, no. 1, pp. 139–152, 2012.
[163]  C. Gerard, C. Dufour, S. Goudenege, D. Skuk, and J. P. Tremblay, “AG490 improves the survival of human myoblasts in vitro and in vivo,” Cell Transplantation, vol. 21, no. 12, pp. 2665–2676, 2012.
[164]  C. Gerard, M. A. Forest, G. Beauregard, D. Skuk, and J. P. Tremblay, “Fibrin gel improves the survival of transplanted myoblasts,” Cell Transplantation, vol. 21, no. 1, pp. 127–137, 2012.
[165]  D. Skuk, M. Paradis, M. Goulet, and J. P. Tremblay, “Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies,” Transplantation, vol. 84, no. 10, pp. 1307–1315, 2007.
[166]  B. A. J. Ponder, M. M. Wilkinson, M. Wood, and J. H. Westwood, “Immunohistochemical demonstration of H2 antigens in mouse tissue sections,” Journal of Histochemistry and Cytochemistry, vol. 31, no. 7, pp. 911–919, 1983.
[167]  S. T. Appleyard, M. J. Dunn, V. Dubowitz, and M. L. Rose, “Increased expression of HLA ABC class I antigens by muscle fibres in Duchenne muscular dystrophy, inflammatory myopathy, and other neuromuscular disorders,” The Lancet, vol. 1, no. 8425, pp. 361–363, 1985.
[168]  G. Karpati, Y. Pouliot, and S. Carpenter, “Expression of immunoreactive major histocompatibility complex products in human skeletal muscles,” Annals of Neurology, vol. 23, no. 1, pp. 64–72, 1988.
[169]  A. M. Emslie-Smith, K. Arahata, and A. G. Engel, “Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies,” Human Pathology, vol. 20, no. 3, pp. 224–231, 1989.
[170]  R. Mantegazza, S. M. Hughes, D. Mitchell, M. Travis, H. M. Blau, and L. Steinman, “Modulation of MHC class II antigen expression in human myoblasts after treatment with IFN-γ,” Neurology, vol. 41, no. 7, pp. 1128–1132, 1991.
[171]  C. Cifuentes-Diaz, C. Delaporte, B. Dautreaux, D. Charron, and M. Fardeau, “Class II MHC antigens in normal human skeletal muscle,” Muscle & Nerve, vol. 15, no. 3, pp. 295–302, 1992.
[172]  D. Michaelis, N. Goebels, and R. Hohlfeld, “Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes,” American Journal of Pathology, vol. 143, no. 4, pp. 1142–1149, 1993.
[173]  P. H. Jones, “Implantation of cultured regenerate muscle cells into adult rat muscle,” Experimental Neurology, vol. 66, no. 3, pp. 602–610, 1979.
[174]  B. Guerette, I. Asselin, J. T. Vilquin, R. Roy, and J. P. Tremblay, “Lymphocyte infiltration following allo- and xenomyoblast transplantation in mdx mice,” Muscle & Nerve, vol. 18, no. 1, pp. 39–51, 1995.
[175]  A. Irintchev, M. Zweyer, and A. Wernig, “Cellular and molecular reactions in mouse muscles after myoblast implantation,” Journal of Neurocytology, vol. 24, no. 4, pp. 319–331, 1995.
[176]  A. Wernig and A. Irintchev, “'Bystander' damage of host muscle caused by implantation of MHC-compatible myogenic cells,” Journal of the Neurological Sciences, vol. 130, no. 2, pp. 190–196, 1995.
[177]  B. Guerette, R. Roy, M. Tremblay et al., “Increased granzyme B mRNA after alloincompatible myoblast transplantation,” Transplantation, vol. 60, no. 9, pp. 1011–1016, 1995.
[178]  B. Guerette, G. Tremblay, J. T. Vilquin, et al., “Increased interferon-gamma mRNA expression following alloincompatible myoblast transplantation is inhibited by FK506,” Muscle & Nerve, vol. 19, no. 7, pp. 829–835, 1996.
[179]  A. Boulanger, I. Asselin, R. Roy, and J. P. Tremblay, “Role of non-major histocompatibility complex antigens in the rejection of transplanted myoblasts,” Transplantation, vol. 63, no. 6, pp. 893–899, 1997.
[180]  D. Skuk, “Acute rejection of myofibers in nonhuman primates: key histopathologic features,” Journal of Neuropathology and Experimental Neurology, vol. 71, no. 5, pp. 398–412, 2012.
[181]  D. Skuk and J. P. Tremblay, “Necrosis, sarcolemmal damage and apoptotic events in myofibers rejected by CD8+ lymphocytes: observations in nonhuman primates,” Neuromuscular Disorders, vol. 22, no. 11, pp. 997–1005, 2012.
[182]  J. T. Vilquin, I. Kinoshita, R. Roy, and J. P. Tremblay, “Cyclophosphamide immunosuppression does not permit successful myoblast allotransplantation in mouse,” Neuromuscular Disorders, vol. 5, no. 6, pp. 511–517, 1995.
[183]  G. K. Pavlath, T. A. Rando, and H. M. Blau, “Transient immunosuppressive treatment leads to long-term retention of allogeneic myoblasts in hybrid myofibers,” Journal of Cell Biology, vol. 127, no. 6, pp. 1923–1932, 1994.
[184]  I. Asselin, M. Tremblay, J.-T. Vilquin, B. Guerette, R. Roy, and J. P. Tremblay, “Quantification of normal dystrophin mRNA following myoblast transplantation in mdx mice,” Muscle & Nerve, vol. 18, no. 9, pp. 980–986, 1995.
[185]  O. Hardiman, R. M. Sklar, and R. H. Brown Jr., “Direct effects of cyclosporin A and cyclophosphamide on differentiation of normal human myoblasts in culture,” Neurology, vol. 43, no. 7, pp. 1432–1434, 1993.
[186]  F. Hong, J. Lee, J. Song et al., “Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl-prolyl-cis-trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A-induced cytotoxicity,” The FASEB Journal, vol. 16, no. 12, pp. 1633–1635, 2002.
[187]  G. Camirand, N. J. Caron, I. Asselin, and J. P. Tremblay, “Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice,” Transplantation, vol. 72, no. 1, pp. 38–44, 2001.
[188]  J.-T. Vilquin, I. Asselin, B. Guerette et al., “Myoblast allotransplantation in mice: degree of success varies depending on the efficacy of various immunosuppressive treatments,” Transplantation Proceedings, vol. 26, no. 6, pp. 3372–3373, 1994.
[189]  B. Guérette, M. Gingras, K. Wood, R. Roy, and J. P. Tremblay, “Immunosuppression with monoclonal antibodies and CTLA4-Ig after myoblast transplantation in mice,” Transplantation, vol. 62, no. 7, pp. 962–967, 1996.
[190]  I. Kinoshita, J. T. Vilquin, C. Gravel, R. Roy, and J. P. Tremblay, “Myoblast allotransplantation in primates,” Muscle & Nerve, vol. 18, no. 10, pp. 1217–1218, 1995.
[191]  I. Kinoshita, R. Roy, F. J. Dugré et al., “Myoblast transplantation in monkeys: control of immune response by FK506,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 6, pp. 687–697, 1996.
[192]  C. Semsarian, M. Wu, Y. Ju et al., “Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway,” Nature, vol. 400, no. 6744, pp. 576–581, 1999.
[193]  D. Chandrasekharan, F. Issa, and K. J. Wood, “Achieving operational tolerance in transplantation: how can lessons from the clinic inform research directions?” Transplant International, vol. 26, no. 6, pp. 576–589, 2013.
[194]  G. Camirand, J. Rousseau, M. Ducharme, D. M. Rothstein, and J. P. Tremblay, “Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism,” American Journal of Transplantation, vol. 4, no. 8, pp. 1255–1265, 2004.
[195]  L. Stephan, C. Pichavant, M. Bouchentouf et al., “Induction of tolerance across fully mismatched barriers by a nonmyeloablative treatment excluding antibodies or irradiation use,” Cell Transplantation, vol. 15, no. 8-9, pp. 835–846, 2006.
[196]  G. Camirand, N. J. Caron, N. A. Turgeon, A. A. Rossini, and J. P. Tremblay, “Treatment with anti-CD154 antibody and donor specific transfusion prevents acute rejection of myoblast transplantation,” Transplantation, vol. 73, no. 3, pp. 453–461, 2002.
[197]  G. Camirand, L. Stéphan, J. Rousseau et al., “Central tolerance to myogenic cell transplants does not include muscle neoantigens,” Transplantation, vol. 85, no. 12, pp. 1791–1801, 2008.
[198]  S. P. Quenneville and J. P. Tremblay, “Ex vivo modification of cells to induce a muscle-based expression,” Current Gene Therapy, vol. 6, no. 6, pp. 625–632, 2006.
[199]  Y. Ohtsuka, K. Udaka, Y. Yamashiro, H. Yagita, and K. Okumura, “Dystrophin acts as a transplantation rejection antigen in dystrophin- deficient mice: implication for gene therapy,” Journal of Immunology, vol. 160, no. 9, pp. 4635–4640, 1998.
[200]  S. S. Floyd Jr., P. R. Clemens, M. R. Ontell et al., “Ex vivo gene transfer using adenovirus-mediated full-length dystrophin delivery to dystrophic muscles,” Gene Therapy, vol. 5, no. 1, pp. 19–30, 1998.
[201]  P.-A. Moisset, Y. Gagnon, G. Karpati, and J. P. Tremblay, “Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts,” Gene Therapy, vol. 5, no. 10, pp. 1340–1346, 1998.
[202]  P. Moisset, D. Skuk, I. Asselin et al., “Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 94–99, 1998.
[203]  D. Escors and K. Breckpot, “Lentiviral vectors in gene therapy: their current status and future potential,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 2, pp. 107–119, 2010.
[204]  C. Pichavant and J. P. Tremblay, “Generation of lentiviral vectors for use in skeletal muscle research,” Methods in Molecular Biology, vol. 798, pp. 285–295, 2012.
[205]  C. E. Thomas, A. Ehrhardt, and M. A. Kay, “Progress and problems with the use of viral vectors for gene therapy,” Nature Reviews Genetics, vol. 4, no. 5, pp. 346–358, 2003.
[206]  M. Bokhoven, S. L. Stephen, S. Knight et al., “Insertional gene activation by lentiviral and gammaretroviral vectors,” Journal of Virology, vol. 83, no. 1, pp. 283–294, 2009.
[207]  Z. Ivics and Z. Izsvák, “Transposons for gene therapy!,” Current Gene Therapy, vol. 6, no. 5, pp. 593–607, 2006.
[208]  H. F. Willard, “Human artificial chromosomes coming into focus,” Nature Biotechnology, vol. 16, no. 5, pp. 415–417, 1998.
[209]  H. Hoshiya, Y. Kazuki, S. Abe et al., “A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene,” Molecular Therapy, vol. 17, no. 2, pp. 309–317, 2009.
[210]  Y. Kazuki, M. Hiratsuka, M. Takiguchi et al., “Complete genetic correction of iPS cells from duchenne muscular dystrophy,” Molecular Therapy, vol. 18, no. 2, pp. 386–393, 2010.
[211]  F. S. Tedesco, H. Hoshiya, G. D'Antona, et al., “Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy,” Science Translational Medicine, vol. 3, no. 96, Article ID 96ra78, 2011.
[212]  C. Webster and H. M. Blau, “Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy,” Somatic Cell and Molecular Genetics, vol. 16, no. 6, pp. 557–565, 1990.
[213]  L. V. Simon, J. R. Beauchamp, M. O'Hare, and I. Olsen, “Establishment of long-term myogenic cultures from patients with Duchenne muscular dystrophy by retroviral transduction of a temperature-sensitive SV40 large T antigen,” Experimental Cell Research, vol. 224, no. 2, pp. 264–271, 1996.
[214]  S. Seigneurin-Venin, V. Bernard, P. Moisset et al., “Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice,” Biochemical and Biophysical Research Communications, vol. 272, no. 2, pp. 362–369, 2000.
[215]  S. Seigneurin-Venin, V. Bernard, and J. P. Tremblay, “Telomerase allows the immortalization of T antigen-positive DMD myoblasts: a new source of cells for gene transfer application,” Gene Therapy, vol. 7, no. 7, pp. 619–623, 2000.
[216]  C. Huard, P. Moisset, A. Dicaire et al., “Transplantation of dermal fibroblasts expressing MyoD1 in mouse muscles,” Biochemical and Biophysical Research Communications, vol. 248, no. 3, pp. 648–654, 1998.
[217]  K. Goldring, G. E. Jones, C. A. Sewry, and D. J. Watt, “The muscle-specific marker desmin is expressed in a proportion of human dermal fibroblasts after their exposure to galectin-1,” Neuromuscular Disorders, vol. 12, no. 2, pp. 183–186, 2002.
[218]  K. Goldring, G. E. Jones, R. Thiagarajah, and D. J. Watt, “The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro,” Journal of Cell Science, vol. 115, no. 2, pp. 355–366, 2002.
[219]  M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007.
[220]  K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
[221]  Y. Mizuno, H. Chang, K. Umeda et al., “Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells,” FASEB Journal, vol. 24, no. 7, pp. 2245–2253, 2010.
[222]  R. Darabi, W. Pan, D. Bosnakovski, J. Baik, M. Kyba, and R. C. R. Perlingeiro, “Functional myogenic engraftment from mouse iPS cells,” Stem Cell Reviews and Reports, vol. 7, no. 4, pp. 948–957, 2011.
[223]  R. Darabi, R. W. Arpke, S. Irion et al., “Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice,” Cell Stem Cell, vol. 10, no. 5, pp. 610–619, 2012.
[224]  A. Filareto, S. Parker, R. Darabi, et al., “An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells,” Nature Communications, vol. 4, Article ID 1549, 2013.
[225]  S. Goudenege, C. Lebel, N. B. Huot, et al., “Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation,” Molecular Therapy, vol. 20, no. 11, pp. 2153–2167, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413