全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Actuators  2013 

Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems

DOI: 10.3390/act2040129

Keywords: robotic actuator, artificial muscle, muscle-like actuator

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc.). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

References

[1]  Schulte, H.F. The Characteristic of the McKibben Artificial Muscle. In The Application of External Power in Prosthetics and Orthotics; National Academy of Sciences—National Research Council, Publication 874: Washington, DC, USA, 1961; pp. 94–115.
[2]  Secord, T.W.; Asada, H.H. A variable stiffness PZT actuator having tunable resonant frequencies. IEEE Trans. Robot. 2010, 26, 993–1005, doi:10.1109/TRO.2010.2076850.
[3]  Ikuta, K. Micro/miniature Shape Memory Alloy Actuator. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Cincinnati, OH, USA, 13–18 May 1990; pp. 2156–2161.
[4]  Baughman, R.H. Conducting polymer artificial muscles. Synth. Met. 1996, 78, 339–353, doi:10.1016/0379-6779(96)80158-5.
[5]  Caldwell, D.G.; Medrano-Cerda, G.A.; Goodwin, M.J. Control of pneumatic muscle actuators. IEEE Control. Syst. 1995, 15, 40–48, doi:10.1109/37.341863.
[6]  Hannaford, B.; Winters, J.M. Actuator Properties And Movement Control: Biological and Technological Models. In Multiple Muscle Systems: Biomechanics and Movement Organization; Springer-Verlag: New York, NY, USA, 1990. Chapter 7; pp. 101–120.
[7]  Isermann, R.; Raab, U. Intelligent actuators—Ways to autonomous systems. Automatica 1993, 29, 1315–1331, doi:10.1016/0005-1098(93)90052-U.
[8]  Klute, G.K.; Czerniecki, J.M.; Hannaford, B. Artificial muscles: Actuators for biorobotic systems. Int. J. Robot. Res. 2002, 21, 295–309, doi:10.1177/027836402320556331.
[9]  Klute, G.; Czerniecki, J.; Hannaford, B. Muscle-like Pneumatic Actuators for Below-Knee Prostheses. In Proceedings of the 7th International Conference on New Actuators, Bremen, Germany, 19–21 June 2000; pp. 289–292.
[10]  Versluys, R.; Desomer, A.; Lenaerts, G.; van Damme, M.; Berl, P.; van der Perre, G.; Peeraer, L.; Lefeber, D. A Pneumatically Powered Below-Knee Prosthesis: Design Specifications and First Experiments with an Amputee. In Proceedings of the Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19–22 October 2008; pp. 19–22.
[11]  Ferris, D.P.; Czerniecki, J.M.; Hannaford, B. An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 2005, 21, 189–197.
[12]  Sawicki, G.S.; Ferris, D.P. A pneumatic powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. Neuroeng. Rehabil. 2009, 6, 23, doi:10.1186/1743-0003-6-23.
[13]  Zhang, Z.; Philen, M. Pressurized artificial muscles. J. Intell. Mater. Syst. Struct. 2012, 23, 255–268, doi:10.1177/1045389X11420592.
[14]  Baldwin, H.A. Realizable Models of Muscle Function. In Proceedings of the First Rock Biomechanics Symposium, New York, NY, USA, 5–6 April 1967; pp. 139–148.
[15]  Daerden, F.; Lefeber, D. The concept and design of pleated pneumatic artificial muscles. Int. J. Fluid Power 2000, 2, 41–50.
[16]  Driver, T.; Shen, X. Sleeve muscle actuator: Concept and prototype demonstration. J. Bionic Eng. 2013, 10, 222–230, doi:10.1016/S1672-6529(13)60218-8.
[17]  Sato, T. Pneumatic Actuators for Manipulators. U.S. Patent No. 5,165,323, 4 November 1992.
[18]  Woods, B.K.S.; Kothera, C.S.; Wereley, N.M. Wind tunnel testing of a helicopter rotor trailing edge flap actuated via pneumatic artificial muscles. J. Intell. Mater. Syst. Struct. 2011, 22, 1513–1528, doi:10.1177/1045389X11424216.
[19]  Huber, J.E.; Fleck, N.A.; Ashby, M.F. The selection of mechanical actuators based on performance indices. Proc. R. Soc. Lond. A 1997, 453, 2185–2205, doi:10.1098/rspa.1997.0117.
[20]  Fite, K.B.; Withrow, T.J.; Shen, X.; Wait, K.W.; Mitchell, J.E.; Goldfarb, M. A gas-actuated anthropomorphic prosthesis for transhumeral amputees. IEEE Trans. Robot. 2008, 24, 159–169, doi:10.1109/TRO.2007.914845.
[21]  Winter, D.A. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed. ed.; University of Waterloo Press: Waterloo, ON, Canada, 1991.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133