全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agriculture  2013 

Practicality of Biochar Additions to Enhance Soil and Crop Productivity

DOI: 10.3390/agriculture3040715

Keywords: biochar, carbon sequestration, economic analysis, soil amendment

Full-Text   Cite this paper   Add to My Lib

Abstract:

The benefits of biochar to soils for agricultural purposes are numerous. Biochar may be added to soils with the intention to improve the soil, displace an amount of conventional fossil fuel based fertilizers, and sequester carbon. However, the variable application rates, uncertain feedstock effects, and initial soil state provide a wide range of cost for marginally improved yield from biochar additions, which is often economically impracticable. The need for further clarity on optimizing biochar application to various crop yields is necessary if it is to gain widespread acceptance as a soil amendment.

References

[1]  UNEP. Avoiding Future Famines: Strengthening the Ecological Foundation of Food Security through Sustainable Food Systems; United Nations Environment Program (UNEP): Nairobi, Kenya, 2012.
[2]  Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO UN: Rome, Italy, 2005.
[3]  Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639, doi:10.1038/ngeo325.
[4]  Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009.
[5]  Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 2004, 45, 651–671, doi:10.1016/S0196-8904(03)00177-8.
[6]  Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 2003, 91, 87–102, doi:10.1016/S1385-8947(02)00142-0.
[7]  Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419, doi:10.1007/s11027-005-9006-5.
[8]  Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387, doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
[9]  Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; Vasconcelos de Macedo, J.L.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290, doi:10.1007/s11104-007-9193-9.
[10]  Rondon, M.A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol. Fertil. Soil. 2007, 43, 699–708, doi:10.1007/s00374-006-0152-z.
[11]  Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634, doi:10.1071/SR07109.
[12]  Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495, doi:10.1111/j.1747-0765.2006.00065.x.
[13]  Lehmann, J.; da Silva, J.P., Jr.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357, doi:10.1023/A:1022833116184.
[14]  O’Neill, B.; Grossman, J.; Tsai, M.T.; Gomes, J.E.; Lehmann, J.; Peterson, J.; Neves, E.; Thies, J.E. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microb. Ecol. 2009, 58, 23–35, doi:10.1007/s00248-009-9515-y.
[15]  Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The “Terra Preta” phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41, doi:10.1007/s001140000193.
[16]  Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160, doi:10.1016/j.fcr.2011.11.020.
[17]  Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18, doi:10.1007/s11104-010-0464-5.
[18]  Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82, doi:10.1016/S0065-2113(10)05002-9.
[19]  Laird, A.D. The charcoal vision. A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron. J. 2008, 100, 178–181, doi:10.2134/agrojnl2007.0161.
[20]  An Assessment of the Benefits and Issues Associated with the Application of Biochar to Soil; Shackley, S.J., Sohi, S.P., Eds.; Department for Environment, Food and Rural Affairs: London, UK, 2010.
[21]  Okimori, Y.; Ogawa, M.; Takahashi, F. Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in Sumatra, Indonesia. Mitigation and adaptation. Strateg. Glob. Chang. 2003, 8, 261–280, doi:10.1023/B:MITI.0000005643.79908.5a.
[22]  Das, K.C.; Garcia-Perez, M.; Bibens, B.; Melear, N. Slow pyrolysis of poultry litter and pine woody biomass: Impact of chars and bio-oils on microbial growth. J. Environ. Sci. Health A 2008, 43, 714–724, doi:10.1080/10934520801959864.
[23]  Shinogi, Y.; Yoshida, H.; Koizumi, T.; Yamaoka, M.; Saito, T. Basic characteristics of low-temperature carbon products from waste sludge. Adv. Environ. Res. 2002, 7, 661–665.
[24]  Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010, 78, 1167–1171, doi:10.1016/j.chemosphere.2010.01.009.
[25]  Sohi, S.P.; Loez-Capel, S.E.; Krull, E.; Bol, R. Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land Water Sci. Rep. 2009, 5, 17–31.
[26]  Covell, P.; Gammie, G.; Hunt, S.; Brunjes, L.; Ng, F.; Nees, D. Advancing Biochar in the Chesapeake: A Strategy to Reduce Pollution from Poultry Litter—Forest Trends/Katoomba Incubator, Carbon War Room, Forest Trends/Chesapeake Fund. 2011. Available online: http://www.forest-trends.org/documents/files/doc_2891.pdf (accessed on 1 June 2013).
[27]  Shackley, S.; Hammond, J.; Gaunt, J.; Ibarrola, R. The feasibility and costs of biochar deployment in the UK. Carbon Manag. 2011, 2, 335–356, doi:10.4155/cmt.11.22.
[28]  Van Zwieten, L.; Meszaros, I.; Downie, A.; Chan, Y.K.; Joseph, S. Soil health: Can the cane industry use a bit of “black magic”? Aust. Canegrow. 2008, 17, 10–11.
[29]  US Biochar Initiative. 2013. Available online: http://www.biochar-us.org/ (accessed on 5 June 2013).
[30]  Williams, M.M.; Arnott, J.C. A comparison of variable economic costs associated with two proposed biochar application methods. Ann. Environ. Sci. 2010, 4, 23–30.
[31]  Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187, doi:10.1016/j.agee.2011.08.015.
[32]  Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128, doi:10.1007/s11104-010-0327-0.
[33]  Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soil 2002, 35, 219–230, doi:10.1007/s00374-002-0466-4.
[34]  Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444, doi:10.1071/SR08036.
[35]  Liu, X.; Zhang, A.; Ji, C.; Joseph, S.; Bian, R.; Li, L.; Pan, G.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant Soil. 2013, doi:10.1007/s11104-013-1806-x.
[36]  Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214, doi:10.1111/gcbb.12037.
[37]  Smith, S.R. Sewage sludge and refuse composts as alternatives for conditioning impoverished soils: Effects on the growth response and mineral status of Petunia grandiflora. J. Hortic. Sci. 1992, 67, 703–716.
[38]  Kammann, C.I.; Linsel, S.; G??ling, J.W.; Koyro, H.W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant Soil 2011, 345, 195–210, doi:10.1007/s11104-011-0771-5.
[39]  Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: Soil physical properties, leaf SPAD and grain yield. Field Crop. Res. 2009, 111, 81–84, doi:10.1016/j.fcr.2008.10.008.
[40]  Widowati, U.W.; Soehono, L.A.; Shi, D.Z.; Guritno, B. Effect of biochar on the release and loss of nitrogen from urea fertilization. J. Agric. Food. Tech. 2011, 1, 127–132.
[41]  Masulili, A.; Utomo, W.H.; Syechfani, M.S. Rice husk biochar for rice based cropping system in acid soil. J. Agric. Sci. 2010, 3, 25–33.
[42]  Gaunt, J.L.; Cowie, A. Biochar, Greenhouse Gas Accounting and Emissions Trading. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 317–340.
[43]  Zhang, W.-F.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380, doi:10.1073/pnas.1210447110.
[44]  Day, D.; Evans, R.J.; Lee, J.W.; Reicosky, D. Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 2005, 30, 2558–2579, doi:10.1016/j.energy.2004.07.016.
[45]  Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219, doi:10.1016/j.soilbio.2008.10.016.
[46]  Stern, N. The Economics of Climate Change: The Stern Review. Cambridge Univ. Press: Cambridge, UK, 2007. Available online: http://unfccc.int/files/kyoto_protocol/status_of_ratification/application/pdf/kp_ratification.pdf (accessed on 9 September 2013).
[47]  Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212, doi:10.1111/j.1475-2743.2011.00340.x.
[48]  Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972, doi:10.2134/jeq2012.0151.
[49]  USDA Economic Research Service. Commodity Costs and Concerns. 2013. Available online: http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx (accessed on 5 June 2013).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133