全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agriculture  2013 

Alternative Land Management Strategies and Their Impact on Soil Conservation

DOI: 10.3390/agriculture3030464

Keywords: soil conservation practices, organic farming, low-input farming, land use change, farming system analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil conservation is threatened by a number of factors, namely the effects of intensive agricultural practices, the increasing pressure for food production linked to the increasing human population, the consumption patterns in developed and emerging economies, and the conversion of agriculture from the production of commodities (which is itself a goal in need of discussion) to the production of biofuels. The extent of human pressure and the effects of conflicting land use systems need to be addressed. Alternative and conservative agricultural practices need to be explored and widely adopted in order to preserve the soil fertility, assessing their pros and cons. In this paper, the main potential alternative practices are reviewed, focusing in particular on organic farming. It is also argued that in order to better plan to preserve soil health a strategy considering the whole food system is required.

References

[1]  Smil, V. Feeding the World: A Challenge for the Twenty-First Century; The MIT Press: Cambridge, MA, USA, 2000.
[2]  Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677, doi:10.1038/nature01014.
[3]  Pimentel, D.; Pimentel, M. Food, Energy, and Society, 3rd ed. ed.; CRC Press: Boca Raton, FL, USA, 2008.
[4]  Hazell, H.; Wood, S. Drivers of change in global agriculture. Phil. Trans. B 2008, 363, 495–515, doi:10.1098/rstb.2007.2166.
[5]  Smil, V. Energy at the Crossroads; The MIT Press: Cambridge, MA, USA, 2003.
[6]  Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284, doi:10.1126/science.1057544.
[7]  Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute: Washington, DC, USA, 2005. Available online: http://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed on 20 July 2009).
[8]  Water for Food, Water for Life. A Comprehensive Assessment of Water Management in Agriculture; Earthscan: London, UK, 2007. Available online: http://www.iwmi.cgiar.org/assessment/Publications/books.htm (accessed on 10 May 2013).
[9]  Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272, doi:10.1073/pnas.0611508104.
[10]  Quinton, J.N.; Govers, G.; van Oost, C.; Bardgett, R.D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 2010, 3, 311–314, doi:10.1038/ngeo838.
[11]  Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Sphpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123, doi:10.1126/science.267.5201.1117.
[12]  Rasmussen, P.E.; Goulding, K.W.T.; Brown, J.R.; Grace, P.R.; Janzen, H.H.; K?rschens, M. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change. Science 1998, 282, 893–896, doi:10.1126/science.282.5390.893.
[13]  Sullivan, P. Drought Resistant Soil; ATTRA, National Center for Appropriate Technology USDA: Washington, DC, USA, 2002. Available online: http://attra.ncat.org/attra-pub/PDF/drought.pdf (accessed on 24 November 2009).
[14]  Lal, R. Soil carbon sequestration impact on global climate and food security. Science 2004, 304, 1623–1627, doi:10.1126/science.1097396.
[15]  Lal, R. Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestration. Crop Science 2010, 50, 120–131.
[16]  NRC (National Research Council). Toward Sustainable Agricultural Systems in the 21st Century; National Academies Press: Washington, DC, USA, 2010. Available online: http://www.nap.edu/catalog/12832.html (accessed on 3 March 2012).
[17]  Wood, R.; Lenzen, M.; Dey, C.; Lundie, S. A comparative study of some environmental impacts of conventional and organic farming in Australia. Agric. Syst. 2006, 89, 324–348, doi:10.1016/j.agsy.2005.09.007.
[18]  Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L., II; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851, doi:10.1126/science.1131634.
[19]  Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520, doi:10.1126/science.1170261.
[20]  Berhe, A.; Harte, J.; Harden, J.; Torn, M. The significance of the erosion-induced terrestrial carbon sink. BioScience 2007, 57, 337–346, doi:10.1641/B570408.
[21]  Allison, F.E. Soil Organic Matter and Its Role in Crop Production; Elsevier: Amsterdam, The Netherlands, 1973.
[22]  Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; Westview Press: Boulder, CO, USA, 1987.
[23]  Pimentel, D.; Kounang, N. Ecology of soil erosion in ecosystems. Ecosystems 1998, 1, 416–426, doi:10.1007/s100219900035.
[24]  Bot, A. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO: Rome, Italy, 2005. Available online: http://www.fao.org/docrep/009/a0100e/a0100e00.htm#Contents (accessed on 20 June 2009).
[25]  Russell, E.W. The role of organic matter in soil fertility. Phil. Trans. B 1977, 281, 209–219, doi:10.1098/rstb.1977.0134.
[26]  Barrows, H.L.; Kilmer, V.J. Plant nutrient losses from soils by water erosion. Adv. Agron. 1963, 15, 303–315, doi:10.1016/S0065-2113(08)60401-0.
[27]  Liebert, B. The Environmental Heritage of Soviet Agriculture; CABI: Oxon, UK, 1995.
[28]  Lal, R. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12, doi:10.1016/j.still.2006.11.004.
[29]  Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is there a need for a more sustainable agriculture? Crit. Rev. Plant. Sci. 2011, 30, 6–23, doi:10.1080/07352689.2011.553515.
[30]  Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant. Sci. 2011, 30, 95–124, doi:10.1080/07352689.2011.554355.
[31]  Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impact of organic zero tillage systems on crops, weeds and soil quality. Sustainability 2013, 5, 3172–3201, doi:10.3390/su5073172.
[32]  Klaus, V.H.; Kleinebeckera, T.; Prati, D.; Gossner, M.M.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; Lange, M.; Müller, J.; et al. Does organic grassland farming benefit plant and arthropod diversity at the expense of yield and soil fertility? Agric. Ecosys. Env. 2013, 177, 1–9, doi:10.1016/j.agee.2013.05.019.
[33]  World Food Summit 1996. Declaration on World Food Security; FAO: Rome, Italy. Available online: http://www.fao.org/docrep/003/w3613e/w3613e00.htm (accessed on 4 August 2013).
[34]  Wezel, A.; Soldat, V. A quantitative and qualitative historical analysis of the scientific discipline of agroecology. Int. J. Agric. Sust. 2009, 7, 3–18, doi:10.3763/ijas.2009.0400.
[35]  Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 2009, 29, 503–515, doi:10.1051/agro/2009004.
[36]  Altieri, M.A. Agroecology: The science of natural resource management for poor farmers in marginal environments. Agric. Ecosys. Environ. 2002, 93, 1–24, doi:10.1016/S0167-8809(02)00085-3.
[37]  Giampietro, M. Multi-Scale Integrated Analysis of Agroecosystems: A Complex System Approach; CRC press: Boca Raton, FL, USA, 2003.
[38]  Gomiero, T.; Giampietro, M.; Mayumi, K. Facing complexity on agro-ecosystems: A new approach to farming system analysis. Int. J. Agric. Res. Gov. Ecol. 2006, 5, 116–144.
[39]  Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574, doi:10.1126/science.1111772.
[40]  Giampietro, M. Socioeconomic pressure, demographic pressure, environmental loading, and technological changes in agriculture. Agric. Ecosys. Environ. 1997, 65, 201–229, doi:10.1016/S0167-8809(97)00050-9.
[41]  Gomiero, T.; Giampietro, M.; Bukkens, S.M.; Paoletti, G.M. Biodiversity use and technical performance of freshwater fish culture in different socio-economic context: China and Italy. Agric. Ecosys. Environ. 1997, 62, 169–185, doi:10.1016/S0167-8809(96)01136-X.
[42]  Gomiero, T.; Giampietro, M. Multiple-scale integrated analysis of farming systems: The Thuong Lo commune (Vietnamese uplands) case study. Pop. Environ. 2001, 22, 315–352, doi:10.1023/A:1026624630569.
[43]  FAO. Organic Agriculture, Environment and Food Security; Environment and Natural Resources Service Sustainable Development Department, FAO: Rome, Italy, 2002. Available online: http://www.fao.org/DOCREP/005/Y4137E/y4137e00.htm#TopOfPage (accessed on 12 January 2009).
[44]  UN (United Nations). Population NewsletterNumber 83. 2007. Available online: http://www.un.org/esa/population/publications/popnews/Newsltr_83.pdf (accessed on 2 July 2009).
[45]  Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision, ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012. Available online: http://www.fao.org/docrep/016/ap106e/ap106e.pdf (accessed on 24 June 2013).
[46]  Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; United States Department of Agriculture: Washington, DC, USA, 2008. Available online: http://www.ers.usda.gov/PUBLICATIONS/WRS0801/WRS0801. PDF (accessed on 20 May 2009).
[47]  UNEP (United Nations Environmental Programme). The Environmental Food Crisis the Environment’s Role in Averting Future Food Crises a UNEP Rapid Response Assessment; UNEP, GRID-Arendal: Arendal, Norway, 2009. Available online: http://www.grida.no/publications/rr/food-crisis/ (accessed on 12 May 2010).
[48]  FAO. The State of Food Insecurity in the Developing World. FAO: Rome, Italy, 2012. Available online: http://www.fao.org/docrep/016/i3027e/i3027e.pdf (accessed on 24 June 2010).
[49]  Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499, doi:10.1126/science.277.5325.494.
[50]  Haberl, H.; Krausmann, F.; Erb, K.H.; Schulz, N.B.; Rojstaczer, S.; Sterling, S.M.; Moore, N. Human appropriation of net primary production. Science 2002, 14, 1968–1969.
[51]  Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873, doi:10.1038/nature02619.
[52]  FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk. FAO: Rome, Italy, 2011. Available online: http://www.fao.org/docrep/017/i1688e/i1688e.pdf (accessed on 9 August 2013).
[53]  FAO. World Agriculture: Towards 2015/2030; FAO: Rome, Italy, 2003. Available online: ftp://ftp.fao.org/docrep/fao/004/y3557e/y3557e.pdf (accessed on 20 January 2009).
[54]  Borlaug, N. Feeding a hungry world. Science 2007, 318, 359, doi:10.1126/science.1151062.
[55]  Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Phil. Trans. R. Soc. B 2010, 365, 2769–2777, doi:10.1098/rstb.2010.0180.
[56]  Giampietro, M.; Mayumi, K. The Biofuel Delusion: The Fallacy of Large Scale Agro-Biofuels Production; Earthscan: London, UK, 2009.
[57]  Gomiero, T.; Paoletti, M.G.; Pimentel, D. Biofuels: Ethics and concern for the limits of human appropriation of ecosystem services. J. Agric. Env. Ethics 2010, 23, 403–434, doi:10.1007/s10806-009-9218-x.
[58]  MacKay, D.J.C. Sustainable Energy—Without the Hot Air. 2009. Available online: http://www.withouthotair.com/download.html (accessed on 20 August 2009).
[59]  Giampietro, M.; Ulgiati, S.; Pimentel, D. Feasibility of large-scale biofuel production. BioScience 1997, 47, 587–600, doi:10.2307/1313165.
[60]  Rockstrom, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260, doi:10.1073/pnas.0605739104.
[61]  Smil, V. Water news: Bad, good and virtual. Am. Sci. 2008, 96, 339–407, doi:10.1511/2008.74.399.
[62]  Krebs, J.R.; Wilson, J.D.; Bradbury, R.B.; Siriwardena, G.M. The second silent spring? Nature 1999, 400, 611–612, doi:10.1038/23127.
[63]  Jarvis, D.I.; Hodgkin, T.; Sthapit, B.R.; Fadda, C.; Lopez-Noriega, I. An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit. Rev. Plant. Sci. 2011, 30, 125–176, doi:10.1080/07352689.2011.554358.
[64]  Zhu, Y.Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722, doi:10.1038/35021046.
[65]  Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555, doi:10.1126/science.1106049.
[66]  Sachs, J.D.; Baillie, J.E.M.; Sutherland, W.J.; Armsworth, P.R.; Ash, N.; Beddington, J.; Blackburn, T.M.; Collen, B.; Gardiner, B.; Gaston, K.J.; et al. Biodiversity conservation and the Millennium Development Goals. Science 2009, 325, 1502–1503, doi:10.1126/science.1175035.
[67]  Fowler, C.; Hodgkin, T. Plant genetic resources for food and agriculture: Assessing global availability. Annu. Rev. Environ. Resour. 2005, 29, 143–179, doi:10.1146/annurev.energy.29.062403.102203.
[68]  Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140.
[69]  Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639, doi:10.1038/ngeo325.
[70]  Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125, doi:10.1146/annurev.environ.032108.105046.
[71]  Birkhofer, K.; Sch?ning, I.; Alt, F.; Herold, N.; Klarner, B.; Maraun, M.; Marhan, S.; Oelmann, Y.; Wubet, T.; Yurkov, A.; et al. Gneral relationships between abiotic soil properties and soil biota across spatial scales and different Land-Use types. PLoS One 2012, 7, e43292, doi:10.1371/journal.pone.0043292.
[72]  Winston, M.K. Nature Wars: People vs. Pests; Harvard University Press: Cambridge, MA, USA, 1997.
[73]  Altieri, M.A.; Nicholls, C.I. Biodiversity and Pest. Management in Agroecosystems, 2nd ed. ed.; CRC Press: Boca Raton, FL, USA, 2004.
[74]  The Pesticide Detox; Pretty, J., Ed.; Earthscan: London, UK, 2005.
[75]  Pimentel, D. Technique for Reducing Pesticides Use. Economic and Environmental Benefits; John Wiley & Sons: New York, NY, USA, 1997.
[76]  Richter, E.D. Acute Human Pesticide Poisonings. In Encyclopedia of Pest. Management; Pimentel, D., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2002; pp. 3–6.
[77]  Colborn, T.; Dumanoski, D.; Meyers, J.P. Our Stolen Future: How We Are Threatening Our Fertility, Intelligence and Survival. A Scientific Detective Story; Penguin Books: New York, NY, USA, 1997.
[78]  Lyons, G. Effects of pollutants on the reproductive health of male vertebrate wildlife—Males under threat. CHEM Trust (Chemicals, Health and Environment Monitoring), 2009. Available online: http://www.chemtrust.org.uk/documents/Male%20Wildlife%20Under%20Threat%202008%20full%20report.pdf (accessed on 10 May 2010).
[79]  Stuart, T. Waste: Uncovering the Global Food Scandal; Penguin Books: London, UK, 2009.
[80]  Cuéllar, A.D.; Webber, M.E. Wasted Food, Wasted Energy: The embedded energy in Food waste in the United States. Environ. Sci. Technol. 2010, 44, 6464–6469, doi:10.1021/es100310d.
[81]  FAO. Global Food Loses and Food Waste: Extent, Causes and Prevention. Study Conducted for the International Congress SAVE FOOD! at Interpack, Düsseldorf, Germany 2011. FAO: Rome, Italy, 2011. Available online: http://www.fao.org/docrep/014/mb060e/mb060e00.pdf (accessed on 4 April 2013).
[82]  Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246, doi:10.1146/annurev-environ-081710-161014.
[83]  Smil, V. Eating meat: Evolution, patterns, and consequences. Pop. Dev. Review 2002, 28, 599–639.
[84]  Pimentel, D. Food for thought: A review of the role of energy in current and evolving agriculture. Crit. Rev. Plant. Sci. 2011, 30, 35–44, doi:10.1080/07352689.2011.554349.
[85]  Pimentel, D.; Williamson, S.; Alexander, S.E.; Gonzalez-Pagan, O.; Kontak, C.; Mulkey, S.E. Reducing Energy Inputs in the US Food System. Hum. Ecol. 2008, 36, 459–471, doi:10.1007/s10745-008-9184-3.
[86]  USDA (United State Development Agency). Food, Agriculture, Conservation, and Trade Act of 1990 (FACTA), Public Law 101-624, Title XVI, Subtitle A, Section 1603. Government Printing Office: Washington, DC, USA, 1990.
[87]  Jackson, W. Natural systems agriculture: A truly radical alternative. Agric. Ecosys. Environ. 2002, 88, 111–117, doi:10.1016/S0167-8809(01)00247-X.
[88]  Soule, J.; Piper, J. Farming in Nature’s Image: An Ecological Approach to Agriculture; Island Press: Washington, DC, USA, 1991.
[89]  Odum, E.P. Ecology and Our Endangered Life-Support. Systems; Sinauer Publishers: Sunderland, MA, USA, 1993.
[90]  Sustainable Agricultural Systems; Edwards, C.A., Lal, R., Madden, P., Miller, R.H., House, G., Eds.; Soil and Water Conservation Society: Ankeny, LA, USA, 1990.
[91]  Pretty, J. Agri.-Culture: Reconnecting People, Land and Nature; Earthscan: London, UK, 2002.
[92]  Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Phil. Trans. B 2008, 363, 447–465, doi:10.1098/rstb.2007.2163.
[93]  Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning derVires, F.V.T.; Morrison, J.I.L. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 2006, 40, 1114–1119, doi:10.1021/es051670d.
[94]  Francis, C.; Lieblein, G.; Gliessman, S.; Breland, T.A.; Creamer, N.; Harwood, R.; Salomonsson, L.; Helenius, J.; Rickerl, D.; Salvador, R.; et al. Agroecology: The ecology of food systems. J. Sust. Agric. 2003, 22, 99–118.
[95]  Francis, C.A.; Porter, P. Ecology in sustainable agriculture practices and systems. Crit. Rev. Plant. Sci. 2011, 30, 64–73, doi:10.1080/07352689.2011.554353.
[96]  Gliessman, S.R. Agroecology: Ecological Processes in Sustainable Agriculture, 2nd ed. ed.; Lewis Publisher: Boca Raton, FL, USA, 2007.
[97]  IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. Available online: http://www.ipcc.ch/ (accessed on 20 May 2010).
[98]  U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2008; United States Environmental Protection Agency: Washington, DC, USA, 2010. Available online: http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_ExecutiveSummary.pdf (accessed on 14 May 2010).
[99]  Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265, doi:10.1038/24376.
[100]  Schlesinger, W.H. Carbon and agriculture: Carbon sequestration in soils. Science 1999, 284, 2095, doi:10.1126/science.284.5423.2095.
[101]  Grandy, S.A.; Robertson, G.P. Land-use intensity effects on soil. Ecosystems 2007, 10, 58–73.
[102]  Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 2008, 363, 789–813, doi:10.1098/rstb.2007.2184.
[103]  Cox, T.S.; Glover, J.D.; van Tassel, D.L.; Cox, C.M.; Dehaan, L.R. Prospects for developing perennial grain crops. Bioscience 2005, 59, 649–659.
[104]  Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased food and ecosystem security via perennial grains. Science 2010, 328, 1638–1639, doi:10.1126/science.1188761.
[105]  Codex Alimentarius. Guidelines for the Production, Processing, Labelling and Marketing of Organically Produced Foods (GL 32–1999, Rev. 1–2001). 2004. Available online: http://www.codexalimentarius.net/web/standard_list.do?lang=en (accessed on 24 November 2007).
[106]  Courville, S. Organic Standards and Certification. In Organic Agriculture. A global Perspective; Kristiansen, P., Taji, A., Reganold, J., Eds.; CSIRO Publishing: Collingwood, Australia, 2006; pp. 201–220.
[107]  EC (European Commission). Council Regulation (EC) No 834/2007, of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092. 2007. Available online: http://eurlex.europa.eu/LexUriServ/site/en/oj/2007/l_189/l_18920070720en00010023.pdf (accessed on 25 November 2009).
[108]  USDA (United States Department of Agriculture). Agricultural Statistics; U.S. Department of Agriculture: Washington, DC, USA, 2007.
[109]  IFOAM (International Movement of Organic Agriculture Movements). The World of Organic Agriculture—Statistics and Emerging Trends 2008; International Federation of Organic Agriculture Movements—IFOAM: Bonn, Germany, 2008.
[110]  IFOAM (International Movement of Organic Agriculture Movements). Definition of Organic Agriculture. IFOAM: Bon, Germany, 2010. Available online: http://www.ifoam.org (accessed on 10 March 2010).
[111]  Conford, P. The Origins of the Organic Movement; Floris Books: Glasgow, UK, 2001.
[112]  Lotter, D.W. Organic agriculture. J. Sust. Agric. 2003, 21, 59–128, doi:10.1300/J064v21n04_06.
[113]  Heckman, J. A history of organic farming: Transitions from Sir Albert Howard’s war in the soil to USDA National Organic Program. Renew. Agr. Food Syst. 2006, 21, 143–150, doi:10.1079/RAF2005126.
[114]  Organic Farming: An International History, 2nd ed.; Lockeretz, W., Ed.; CABI: Wallingford, UK, 2007.
[115]  Organic Agriculture. A Global Perspective; Kristiansen, P., Taji, A., Reganold, J., Eds.; CSIRO Publishing: Collingwood, Australia, 2006.
[116]  Reganold, J.; Elliott, L.; Unger, Y. Long-term effects of organic and conventional farming on soil erosion. Nature 1987, 330, 370–372, doi:10.1038/330370a0.
[117]  Lampkin, N. Organic Farming; Old Pond Publishing: Suffolk, UK, 2002.
[118]  Clark, M.S.; Horwath, W.R.; Shennan, C.; Scow, K.M. Changes in soil chemical properties resulting from organic and low-input farming practices. Agron. J. 1998, 90, 662–671, doi:10.2134/agronj1998.00021962009000050016x.
[119]  Siegrist, S.; Staub, D.; Pfiffner, L.; M?der, P. Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric. Ecosyst. Environ. 1998, 69, 253–264, doi:10.1016/S0167-8809(98)00113-3.
[120]  Stockdale, E.A.; Lampkin, N.H.; Hovi, M.; Keatinge, R.; Lennartsson, E.K.M.; Macdonald, D.W.; Padel, S.; Tattersall, F.H.; Wolfe, M.S.; Watson, C.A. Agronomic and environmental implications for organic farming systems. Adv. Agron 2001, 70, 261–327, doi:10.1016/S0065-2113(01)70007-7.
[121]  M?der, P.; Flieβbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697, doi:10.1126/science.1071148.
[122]  Lotter, D.W.; Seidel, R.; Liebhart, W. The performance of organic and conventional cropping systems in an extreme climate year. Am. J. Altern. Agr. 2003, 18, 146–154, doi:10.1079/AJAA200345.
[123]  Bengtsson, J.; Ahnstrom, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269, doi:10.1111/j.1365-2664.2005.01005.x.
[124]  Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience 2005, 55, 573–582, doi:10.1641/0006-3568(2005)055[0573:EEAECO]2.0.CO;2.
[125]  Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Flieβbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308, doi:10.1016/j.soilbio.2008.05.007.
[126]  Briar, S.S.; Grewal, P.S.; Somasekhar, N.; Stinner, D.; Miller, S.A. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Appl. Soil. Ecol. 2007, 37, 256–266, doi:10.1016/j.apsoil.2007.08.004.
[127]  Flieβbach, A.; Oberholzer, H.R.; Gunst, L.; M?der, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284, doi:10.1016/j.agee.2006.05.022.
[128]  Liu, B.; Tu, C.; Hu, S.; Gumpertz, M.; Ristaino, J.B. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of Southern blight. Appl. Soil Ecol. 2007, 37, 202–214, doi:10.1016/j.apsoil.2007.06.007.
[129]  Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305, doi:10.2134/agronj2006.0362.
[130]  Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; M?der, P.; Stolze, M.; Smith, P.; El-Hage Scialabbad, N.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231, doi:10.1073/pnas.1209429109.
[131]  Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineralnutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30, doi:10.1007/s11104-010-0626-5.
[132]  Kramer, S.B.; Reganold, J.P.; Glover, J.D.; Bohannan, B.J.M.; Mooney, H.A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc. Natl. Acad. Sci. USA 2006, 103, 4522–4527.
[133]  Küstermann, B.; Christen, O.; Hülsbergen, K.J. Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric. Ecosys. Environ. 2010, 135, 70–80, doi:10.1016/j.agee.2009.08.014.
[134]  Sieling, K.; Kage, H. N balance as an indicator of N leaching in an oilseed rape-winter wheat winter barley rotation. Agric. Ecosys. Environ. 2006, 115, 261–269, doi:10.1016/j.agee.2006.01.011.
[135]  Kirchmann, H.; Bergstr?m, L.; K?tterer, T.; Mattsson, L.; Gesslein, S. Comparison of long-term organic and conventional crop–livestock systems on a previously nutrient-depleted soil in Sweden. Agron. J. 2007, 99, 960–972, doi:10.2134/agronj2006.0061.
[136]  Wu, J.Y.; Sardo, V. Sustainable versus Organic Agriculture. In Sociology, Organic Farming, Climate Change and Soil Science; Lichtfouse, E., Ed.; Springler: Dordrecht, Germany, 2010; pp. 41–76.
[137]  Stanhill, G. The comparative productivity of organic agriculture. Agric. Ecosyst. Environ. 1990, 30, 1–26, doi:10.1016/0167-8809(90)90179-H.
[138]  Smolik, J.D.; Dobbs, T.L.; Rickerl, D.H. The relative sustainability of alternative, conventional and reduced-till farming system. Am. J. Altern. Agr. 1995, 10, 25–35, doi:10.1017/S0889189300006081.
[139]  Teasdale, J.R.; Rosecrance, R.C.; Coffman, C.B.; Starr, J.L.; Paltineanu, I.C.; Lu, Y.C.; Watkins, B.K. Performance of reduced-tillage cropping systems for sustainable grain production in Maryland. Am. J. Altern. Agr. 2000, 15, 79–87, doi:10.1017/S0889189300008535.
[140]  Fuller, R.J.; Norton, L.R.; Feber, R.E.; Johnson, P.J.; Chamberlain, D.E.; Joys, A.C.; Mathews, F.; Stuart, R.C.; Townsend, M.C.; Manley, W.J.; et al. Benefits of organic farming to biodiversity vary among taxa. Biol. Lett. 2005, 1, 431–434, doi:10.1098/rsbl.2005.0357.
[141]  Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130, doi:10.1016/j.biocon.2004.07.018.
[142]  Phelan, P.L.; Mason, J.F.; Stinner, B.R. Soil-fertility management and host preference by European corn borer, Ostrinia. nubilalis (Hübner), on Zea. mays L.: A comparison of organic and conventional chemical farming. Agric. Ecosys. Environ. 1995, 56, 1–8, doi:10.1016/0167-8809(95)00640-0.
[143]  Phelan, P.L.; Norris, K.H.; Mason, J.F. Soil-management history and host preference by Ostrinia nuhilalis: Evidence for plant mineral balance mediating insect-plant interactions. Environ. Entomol. 1996, 25, 1329–1336.
[144]  Alyokhin, A.; Porter, G.; Groden, E.; Drummond, F. Colorado potato beetle response to soil amendments: A case in support of the mineral balance hypothesis? Agric. Ecosys. Environ. 2005, 109, 234–244, doi:10.1016/j.agee.2005.03.005.
[145]  Hsu, Y.T.; Shen, T.C.; Hwang, S.Y. Soil fertility management and pest responses: A comparison of organic and synthetic fertilization. J. Econ. Entomol. 2009, 102, 160–169, doi:10.1603/029.102.0123.
[146]  Staley, J.T.; Stewart-Jones, A.; Pope, T.W.; Wright, D.J.; Leather, R.S.; Hadley, P.; Rossiter, J.T.; van Emden, H.F.; Poppy, G.M. Varying responses of insect herbivores to altered plant chemistry under organic and conventional treatments. Proc. R. Soc. B 2010, 277, 779–786, doi:10.1098/rspb.2009.1631.
[147]  Butler, J.; Garratt, M.P.D.; Leather, S.R. Fertilisers and insect herbivores: A meta-analysis. Ann. Appl. Biol. 2012, 161, 223–233, doi:10.1111/j.1744-7348.2012.00567.x.
[148]  Garratt, M.P.D.; Wright, D.J.; Lather, S.R. The effects of farming system and fertilisers on pests and natural enemies: A synthesis of current research. Agric. Ecosyst. Environ. 2011, 141, 261–270, doi:10.1016/j.agee.2011.03.014.
[149]  Reganold, J.P. The fruits of organic farming. Nature 2012, 485, 176, doi:10.1038/485176a.
[150]  Fierer, N.; Grandy, A.S.; Six, J.K.; Paul, E.A. Searching for unifying principles in soil ecology. Soil Biol. Biochem. 2009, 41, 2249–2256, doi:10.1016/j.soilbio.2009.06.009.
[151]  Young, A. Land Resources: Now and for the Future; Cambridge University Press: Cambridge, UK, 1998.
[152]  Perfecto, I.; Vandermeer, J.; Wright, A. Nature’s Matrix. Linking Agriculture, Conservation and Food Sovereignty; Earthscan: London, UK, 2009.
[153]  Vandermeer, J.; Perfecto, I.; Philpott, S. Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. BioScience 2010, 60, 527–537, doi:10.1525/bio.2010.60.7.8.
[154]  Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59, doi:10.1016/j.biocon.2012.01.068.
[155]  De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9, doi:10.1016/j.agsy.2011.12.004.
[156]  Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232, doi:10.1038/nature11069.
[157]  Beets, W.C. Raising and Sustaining Productivity of Smallholder Farming System in the Tropics; AgBe Publishing: Alkmaar, The Netherlands, 1990.
[158]  Leopold, A. A Sand County Almanac; Oxford University Press: New York, NY, USA, 1949.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133