全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Initial Steps towards Biocontrol in Hops: Successful Colonization and Plant Growth Promotion by Four Bacterial Biocontrol Agents

DOI: 10.3390/agronomy3040583

Keywords: Humulus lupulus, beneficial bacteria, root colonization, growth promotion, biological control, Verticillium wilt

Full-Text   Cite this paper   Add to My Lib

Abstract:

Verticillium wilt, caused by Verticillium nonalfalfae and V. dahliae, is a devastating disease in hops that can cause considerable economic crop losses. The perennial use of hops combined with the long persistence of the pathogen in soil make it difficult to suppress the disease with conventional measures. Biological control agents (BCA) are the basis of an environmentally friendly plant protection strategy that uses plant promotion and antagonistic effects of microorganisms. We evaluated the effect of four selected beneficial bacterial strains, Burkholderia terricola ZR2-12, Pseudomonas poae RE*1-1-14, Serratia plymuthica 3Re4-18, and Stenotrophomonas rhizophila DSM14405 T for their use in hops. All strains were shown to be both rhizosphere and endorhiza competent, and their abundances ranged from log 10 3.0 to log 10 6.2 CFU g ?1 root fresh weight in the endorhiza and from log 10 2.9 to log 10 4.7 CFU g ?1 root fresh weight in the rhizosphere with B. terricola ZR2-12 showing the highest overall cell densities. Microscopic visualization of DsRed-labeled transformants with confocal laser scanning microscopy showed different colonization patterns and confirmed the rhizosphere competence. Growth promoting effects on seedlings treated with bacteria were found for S. plymuthica 3Re4-18 and S. rhizophila DSM14405 T. Competent colonization and plant growth promoting effects are the most important prerequisites towards efficient biocontrol.

References

[1]  Engelhard, A.W. Host index of Verticillium albo-atrum (including Verticillium dahliae Kleb.). Plant Dis. Rep. Suppl. 1957, 244, 23–49.
[2]  Harris, R.V. A wilt disease of hops. East Malling Res. Stn. Annu. Rep. 1925 1927, Suppl. II, 92–93.
[3]  Inderbitzin, P.; Bostock, R.M.; Davis, R.M.; Usami, T.; Platt, H.W.; Subbarao, K.V. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS One 2011, 6, e28341.
[4]  Neve, R.A. Hops; Chapman & Hall: London, UK, 1991.
[5]  Keyworth, W.G. Verticillium wilt of the hop (Humulus lupuls). Ann. Appl. Biol. 1942, 29, 346–357, doi:10.1111/j.1744-7348.1942.tb06138.x.
[6]  Debode, J.; De Maeyer, K.; Perneel, M.; Pannecoucque, J.; De Backer, G.; H?fte, M. Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J. Appl. Microbiol. 2007, 103, 1184–1196, doi:10.1111/j.1365-2672.2007.03348.x.
[7]  Müller, H.; Westendorf, C.; Leitner, E.; Chernin, L.; Riedel, K.; Schmidt, S.; Eberl, L.; Berg, G. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol. Ecol. 2009, 67, 468–478, doi:10.1111/j.1574-6941.2008.00635.x.
[8]  Prieto, P.; Navarro-Raya, C.; Valverde-Corredor, A.; Amyotte, S.G.; Dobinson, K.F.; Mercado-Blanco, J. Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb. Biotechnol. 2009, 2, 499–511, doi:10.1111/j.1751-7915.2009.00105.x.
[9]  Berg, G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009, 84, 11–18, doi:10.1007/s00253-009-2092-7.
[10]  Compant, S.; Duffy, B.; Nowak, J.; Clement, C.; Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959, doi:10.1128/AEM.71.9.4951-4959.2005.
[11]  Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678, doi:10.1016/j.soilbio.2009.11.024.
[12]  Lugtenberg, B.; Kamilova, F. Plant-growth-promoting rhizobacteria. Ann. Rev. Microbiol. 2009, 63, 541–556, doi:10.1146/annurev.micro.62.081307.162918.
[13]  Weller, D.M. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 1988, 26, 379–407, doi:10.1146/annurev.py.26.090188.002115.
[14]  Erdogan, O.; Benlioglu, K. Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biol. Control 2010, 53, 39–45, doi:10.1016/j.biocontrol.2009.11.011.
[15]  Kurze, S.; Bahl, H.; Dahl, R.; Berg, G. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 2001, 85, 529–534.
[16]  Mercado-Blanco, J.; Rodr??guez-Jurado, D.; Hervás, A.; Jiménez-D??az, R.M. Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol. Control 2004, 30, 474–486, doi:10.1016/j.biocontrol.2004.02.002.
[17]  Müller, H.; Berg, G. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 2008, 53, 905–916, doi:10.1007/s10526-007-9111-3.
[18]  Naraghi, L.; Heydari, A.; Rezaee, S.; Razavi, M.; Afshari-Azad, H. Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol. Mediterr. 2010, 49, 321–329.
[19]  Naraghi, L.; Heydari, A.; Rezaee, S.; Razavi, M.; Jahanifar, H. Study on antagonistic effects of Talaromyces flavus on Verticillium albo-atrum, the causal agent of potato wilt disease. Crop Prot. 2010, 29, 658–662, doi:10.1016/j.cropro.2010.01.011.
[20]  Naraghi, L.; Heydari, A.; Rezaee, S.; Razavi, M.; Jahanifar, H.; Khaledi, E. Biological control of tomato Verticillium wilt disease by Talaromyces Flavus. J. Plant Prot. Res. 2010, 50, 360–365.
[21]  Gasser, I.; Müller, H.; Berg, G. Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol. Ecol. 2009, 70, 142–150.
[22]  Zachow, C.; Tilcher, R.; Berg, G. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb. Ecol. 2008, 55, 119–129, doi:10.1007/s00248-007-9257-7.
[23]  Faltin, F.; Lottmann, J.; Grosch, R.; Berg, G. Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can. J. Microbiol. 2004, 50, 811–820, doi:10.1139/w04-063.
[24]  Minkwitz, A.; Berg, G. Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J. Clin. Microbiol. 2001, 39, 139–145, doi:10.1128/JCM.39.1.139-145.2001.
[25]  Berg, G.; Krechel, A.; Ditz, M.; Sikora, R.A.; Ulrich, A.; Hallmann, J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 2005, 51, 215–229.
[26]  Grosch, R.; Dealtry, S.; Schreiter, S.; Berg, G.; Mendon?a-Hagler, L.; Smalla, K. Biocontrol of Rhizoctonia solani: complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods. Plant Soil 2012, 361, 343–357.
[27]  Grosch, R.; Faltin, F.; Lottmann, J.; Kofoet, A.; Berg, G. Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Can. J. Microbiol. 2005, 51, 345–353.
[28]  Scherwinski, K.; Grosch, R.; Berg, G. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol. Ecol. 2008, 64, 106–116.
[29]  Schmidt, C.S.; Alavi, M.; Cardinale, M.; Müller, H.; Berg, G. Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol. Fertil. Soils 2012, 48, 947–960, doi:10.1007/s00374-012-0688-z.
[30]  Zachow, C.; Fatehi, J.; Cardinale, M.; Tilcher, R.; Berg, G. Strain-specific colonization pattern of Rhizoctonia antagonists in the root system of sugar beet. FEMS Microbiol. Ecol. 2010, 74, 124–135, doi:10.1111/j.1574-6941.2010.00930.x.
[31]  Gasser, I.; Cardinale, M.; Müller, H.; Heller, S.; Eberl, L.; Lindenkamp, N.; Kaddor, C.; Steinbüchel, A.; Berg, G. Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2–12. Plant Soil 2011, 347, 125–136, doi:10.1007/s11104-011-0833-8.
[32]  Berg, G.; Müller, H.; Zachow, C.; Opelt, K.; Scherwinski, K.; Tilcher, R.; Ulrich, A.; Hallmann, J.; Grosch, R.; Sessitsch, A. Enodphytes: Structural and functional diversity and biotechnological applications in control of plant pathogens. Russ. J. Genet. Appl. Res. 2008, 6, 16–25.
[33]  Egamberdieva, D.; Kucharova, Z.; Davranov, K.; Berg, G.; Makarova, N.; Azarova, T.; Chebotar, V.; Tikhonovich, I.; Kamilova, F.; Validov, S.Z.; Lugtenberg, B. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol. Fert. Soils 2011, 47, 197–205, doi:10.1007/s00374-010-0523-3.
[34]  Abuamsha, R.; Salman, M.; Ehlers, R.U. Differential resistance of oilseed rape cultivars (Brassica napus ssp. oleifera) to Verticillium longisporum infection is affected by rhizosphere colonisation with antagonistic bacteria, Serratia plymuthica and Pseudomonas chlororaphis. BioControl 2011, 56, 101–112, doi:10.1007/s10526-010-9308-8.
[35]  Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471, doi:10.1016/j.tim.2008.07.008.
[36]  Mitter, B.; Petric, A.; Shin, M.W.; Hauberg-Lotte, L.; Reinhold-Hurek, B.; Nowak, J.; Sessitsch, A. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front. Plant Sci. 2013, 4, doi:10.3389/fpls.2013.00120.
[37]  Talboys, P.W. A culture-medium aiding the identification of Verticillium albo-atrum and V. dahliae. Plant Pathol. 1960, 9, 57–58, doi:10.1111/j.1365-3059.1960.tb01147.x.
[38]  Carder, J.H.; Morton, A.; Tabrett, A.M.; Barbara, D.J. Detection and differentiation by PCR of subspecific groups within two Verticillium species causing vascular wilts in herbaceous hosts. In Modern Assays for Plant Pathogenic Fungi: Indification, Detection and Quantification; Schots, A., Dewey, F.M., Oliver, R., Eds.; CAB International: Oxford, UK, 1994; pp. 91–97.
[39]  Down, G.; Barbara, D.; Radi?ek, S. Verticillium albo-atrum and V. dahliae on hop. Bull. OEPP 2007, 37, 528–535, doi:10.1111/j.1365-2338.2007.01160.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413