全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Host Plant Specific Control of 2,4-Diacetylphloroglucinol Production in the Rhizosphere

DOI: 10.3390/agronomy3040621

Keywords: Pseudomonas brassicacearum, phlD, 2,4-diacetylphloroglucinol, biocontrol, rhizosphere, root exudates, mRNA-SIP, DNA-SIP.

Full-Text   Cite this paper   Add to My Lib

Abstract:

To shed light on phytobeneficial bacterial gene expression in situ, we investigated the expression of phlD gene involved in 2,4-diacetylphloroglucinol production. For that purpose, stable isotope probing (SIP) of DNA and mRNA approaches were used. Arabidopsis thaliana seedlings were grown under 13CO 2 for 27 days, and the presence and expression of phlD gene was determined in the rhizosphere soil and on the roots of A. thaliana. Results showed that phlD was present and expressed by bacteria inhabiting rhizosphere soil and deriving nutrients from the breakdown of organic matter and from root exudates, whereas phlD gene expression seemed to be repressed on roots. These data were validated in vitro by inoculating four plant species by the phytobeneficial bacterium Pseudomonas brassicacearum. phlD gene expression was highly activated by root exudates of wheat and that of Medicago truncatula and to a lesser extent by that of Brassica napus while it was completely suppressed by root exudates of A. thaliana. Overall, these results lead us to the conclusion that the signals to down regulate phl gene expression may derive from A. thaliana root exudates.

References

[1]  Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266, doi:10.1146/annurev.arplant.57.032905.105159.
[2]  Haichar, F.Z.; Roncato, M.A.; Achouak, W. Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microb. Ecol. 2012, 81, 291–302, doi:10.1111/j.1574-6941.2012.01345.x.
[3]  Haichar, F.Z.; Marol, C.; Berge, O.; Rangel-Castro, J.; Prosser, J.I.; Balesdent, J.; Heulin, T.; Achouak, W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1221–1230, doi:10.1038/ismej.2008.80.
[4]  Jousset, A.; Rochat, L.; Lanoue, A.; Bonkowski, M.; Keel, C.; Scheu, S. Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. MPMI. 2011, 24, 352–358, doi:10.1094/MPMI-09-10-0208.
[5]  Haas, D.; Défago, G. Biological control of soil-borne pathogens by Fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319, doi:10.1038/nrmicro1129.
[6]  Almario, J.; Moenne-Loccoz, Y.; Muller, D. Monitoring of the relation between 2,4-diacetylphloroglucinol-producing Pseudomonas and Thielaviopsis basicola populations by real-time PCR in tobacco black root-rot suppressive and conducive soils. Soil Biol. Biochem. 2012, 57, 44–155.
[7]  Achouak, W.; Sutra, L.; Heulin, T.; Meyer, J.-M.; Fromin, N.; Degraeve, S.; Christen, R; Gardan, L. Description of Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Arabidopsis thaliana and Brassica napus. Int. J. Syst. Evol. Microbiol. 2000, 50, 9–18, doi:10.1099/00207713-50-1-9.
[8]  Persello-Cartieaux, F.; David, P.; Sarrobert, C.; Thibaud, MC.; Achouak, W.; Robaglia, C.; Nussaume, L. Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturally root-associated Pseudomonas. Planta 2001, 212, 190–198, doi:10.1007/s004250000384.
[9]  Lalaouna, D.; Fochesato, S.; Sanchez, L.; Schmitt-Kopplin, P.; Haas, D.; Heulin, T.; Achouak, W. Phenotypic switching involves GacS/GacAdependent Rsm small RNAs in Pseudomonas brassicacearum. Appl. Environ. Microbiol. 2012, 78, 1658–1665, doi:10.1128/AEM.06769-11.
[10]  Haas, D.; Keel, C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 2003, 41, 117–153, doi:10.1146/annurev.phyto.41.052002.095656.
[11]  Laville, J.; Voisard, C.; Keel, C.; Mauhofer, M.; Défago, G.; Haas, D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc. Natl. Acad. Sci. USA. 1992, 89, 1562–1566.
[12]  de Werra, P.; Huser, A.; Tabacchi, R.; Keel, C.; Maurhofer, M. Plant- and microbe-derived compounds affect the expression of genes encoding antifungal compounds in a pseudomonad with biocontrol activity. Appl. Environ. Microbiol. 2011, 77, 2807–2812, doi:10.1128/AEM.01760-10.
[13]  Picard, C.; Di Cello, F.; Ventura, M.; Fani, R.; Guckert, A. Frequency and biodiversity of 2,4-diacetylphloroglucinol producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 2000, 66, 948–955, doi:10.1128/AEM.66.3.948-955.2000.
[14]  Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol. Ecol. 2005, 52, 59–69, doi:10.1016/j.femsec.2004.10.007.
[15]  Achouak, W.; Conrod, S.; Cohen, V.; Heulin, T. Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonisation strategy. MPMI. 2004, 17, 872–879, doi:10.1094/MPMI.2004.17.8.872.
[16]  Keel, C.; Schnider, U.; Maurhofer, M.; Voisard, C.; Laville, J.; Burger, P.; Wirthner, P.; Haas, D.; Défago, G. Suppression of root diseases by Pseudomonas fluorescens CHA0, importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. MPMI. 1992, 5, 4–13, doi:10.1094/MPMI-5-004.
[17]  Brazelton, J.N.; Pfeufer, E.E.; Sweat, T.A.; Gardener, B.B.; Coenen, C. 2,4-Diacetylphloroglucinol alters plant root development. Mol. Plant-Microb. Interact. 2008, 21, 1349–1358, doi:10.1094/MPMI-21-10-1349.
[18]  Duffy, B.K.; Défago, G. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 1997, 87, 1250–1257, doi:10.1094/PHYTO.1997.87.12.1250.
[19]  Schnider-Keel, U.; Seematter, A.; Maurhofer, M.; Blumer, C.; Duffy, B.; Gigot-Bonnefoy, C.; Reimmann, C.; Notz, R.; Défago, G.; Haas, D.; Keel, C. Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bact. 2000, 182, 1215–1225, doi:10.1128/JB.182.5.1215-1225.2000.
[20]  Chabeaud, P.; de Groot, A.; Bitter, W.; Tommassen, J.; Heulin, T.; Achouak, W. Phase-variable expression of an operon encoding extracellular alkaline protease, serine protease homologue and lipase in Pseudomonas brassicacearum. J. Bacteriol. 2001, 183, 2117–2120, doi:10.1128/JB.183.6.2117-2120.2001.
[21]  Fromin, N.; Achouak, W.; Thiery, J.M.; Heulin, T. The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana, influence of plant genotype. FEMS Microbiol. Ecol. 2001, 37, 21–29, doi:10.1111/j.1574-6941.2001.tb00849.x.
[22]  Ross, I.; Alami, Y.; Harvey, P.R.; Achouak, W.; Ryder, M. Genetic diversity and biological control activity of novel species related to pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 2000, 66, 1609–1616, doi:10.1128/AEM.66.4.1609-1616.2000.
[23]  Weller, D.M.; Mavrodi, D.V.; van Pelt, J.A.; Pieterse, C.M.J.; van Loon, L.C.; Bakker, P.A.H.M. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinolproducing Pseudomonas fluorescens. Phytopathology. 2012, 102, 403–412.
[24]  Phillips, D.A.; Fox, T.C.; King, M.D.; Bhuvaneswari, T.V.; Teuber, L.R. Microbial products trigger amino acid exudation from plant roots. Plant Physiol. 2004, 136, 2887–2894, doi:10.1104/pp.104.044222.
[25]  Raaijmakers, J.M.; Weller, D.M. Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. MPMI. 1998, 11, 144–152, doi:10.1094/MPMI.1998.11.2.144.
[26]  De Souza, J.T.; Raaijmakers, J.M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 2003, 43, 21–34.
[27]  Derrien, D.; Marol, C.; Balesdent, J. The dynamics of neutral sugars in the rhizosphere of wheat, an approach by 13C pulse-labelling and GC/C/IRMS. Plant Soil 2004, 267, 243–253, doi:10.1007/s11104-005-5348-8.
[28]  Lueders, T.; Manefield, M.; Friedrich, M.W. Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ. Microbiol. 2004, 6, 73–78.
[29]  Haichar, F.Z.; Achouak, W.; Christen, R.; Heulin, T.; Marol, C.; Marais., M.F.; Mougel, C.; Ranjard, L.; Balesdent, J.; Berge, O. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ. Microbiol. 2007, 9, 625–634, doi:10.1111/j.1462-2920.2006.01182.x.
[30]  Rangel-Castro, J.I.; Killham, K.; Ostle, N.; Nicol, G.W.; Anderson, I.C.; Scrimgeour, C.M.; Killham, K.; Meharg, A.A. Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ. Microbiol. 2005, 7, 828–838, doi:10.1111/j.1462-2920.2005.00756.x.
[31]  McCaig, A.E.; Glover, L.A.; Prosser, J.I. Numerical analysis of grassland bacterial community structure under different land management regimes by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns. Appl. Environ. Microbiol. 2001, 67, 4554–4559, doi:10.1128/AEM.67.10.4554-4559.2001.
[32]  Altschul, S.F.; Gish, W.; Miller, W.; Myers, W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413