全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture

DOI: 10.3390/agronomy3040648

Keywords: biocontrol, microbiome, microscopy, next-generation bio-product, “omic”-technologies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plants have recently been recognized as meta-organisms due to a close symbiotic relationship with their microbiome. Comparable to humans and other eukaryotic hosts, plants also harbor a “second genome” that fulfills important host functions. These advances were driven by both “omics”-technologies guided by next-generation sequencing and microscopic insights. Additionally, these new results influence applied fields such as biocontrol and stress protection in agriculture, and new tools may impact (i) the detection of new bio-resources for biocontrol and plant growth promotion, (ii) the optimization of fermentation and formulation processes for biologicals, (iii) stabilization of the biocontrol effect under field conditions, and (iv) risk assessment studies for biotechnological applications. Examples are presented and discussed for the fields mentioned above, and next-generation bio-products were found as a sustainable alternative for agriculture.

References

[1]  Hartmann, A.; Rothballer, M.; Schmid, M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 2008, 312, 7–14, doi:10.1007/s11104-007-9514-z.
[2]  Leveau, J.H.J. The magic and menace of metagenomics: Prospects for the study of plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 2007, 119, 279–300, doi:10.1007/s10658-007-9186-9.
[3]  Jansson, J.K.; Neufeld, J.D.; Moran, M.A.; Gilbert, J.A. Omics for understanding microbial functional dynamics. Environ. Microbiol. 2012, 14, 1–3, doi:10.1111/j.1462-2920.2011.02518.x.
[4]  Sorensen, J.; Hauberg Nicolaisen, M.; Ron, E.; Simonet, P. Molecular tools in rhizosphere microbiology—From single-cell to whole-community analysis. Plant Soil 2009, 321, 483–512, doi:10.1007/s11104-009-9946-8.
[5]  Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486, doi:10.1016/j.tplants.2012.04.001.
[6]  Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13, doi:10.1111/j.1574-6941.2009.00654.x.
[7]  Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 2001, 67, 4742–4751.
[8]  Berg, G.; Zachow, C.; Lottmann, J.; G?tz, M.; Costa, R.; Smalla, K. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 2005c, 71, 4203–4213, doi:10.1128/AEM.71.8.4203-4213.2005.
[9]  Berg, G.; Opelt, K.; Zachow, C.; Lottmann, J.; G?tz, M.; Costa, R.; Smalla, K. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol. Ecol. 2006, 56, 250–261, doi:10.1111/j.1574-6941.2005.00025.x.
[10]  Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266, doi:10.1146/annurev.arplant.57.032905.105159.
[11]  Doornbos, R.F.; van Loon, L.C.; Bakker, P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron. Sustain. 2012, 32, 227–243, doi:10.1007/s13593-011-0028-y.
[12]  Hartmann, A.; Schmid, M.; van Tuinen, D.; Berg, G. Plant-driven selection of microbes. Plant Soil 2009, 321, 235–257, doi:10.1007/s11104-008-9814-y.
[13]  Haichar, F.Z.; Marol, C.; Berge, O.; Rangel-Castro, J.I.; Prosser, J.I.; Balesdent, J.; Heulin, T.; Achouak, W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1221–1230, doi:10.1038/ismej.2008.80.
[14]  Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; del Rio, T.G.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488, 86–90, doi:10.1038/nature11237.
[15]  Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat , E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95, doi:10.1038/nature11336.
[16]  Vorholt, J.A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840, doi:10.1038/nrmicro2910.
[17]  Ryan, R.P.; Germaine, K.; Franks, A.; Ryan, D.J.; Dowling, D.N. Bacterial endophytes: Recent developments and applications. FEMS Microbiol. Lett. 2008, 278, 1–9, doi:10.1111/j.1574-6968.2007.00918.x.
[18]  Berg, G.; Krechel, A.; Ditz, M.; Sikora, R.A.; Ulrich, A.; Hallmann, J. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 2005, 51, 215–229, doi:10.1016/j.femsec.2004.08.006.
[19]  Fürnkranz, M.; Lukesch, B.; Müller, H.; Huss, H.; Grube, M.; Berg, G. Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb. Ecol. 2012, 63, 418–428, doi:10.1007/s00248-011-9942-4.
[20]  Bragina, A.; Berg, C.; Cardinale, M.; Shcherbakov, A.; Chebotar, V.; Berg, G. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle. ISME J. 2012, 6, 802–813, doi:10.1038/ismej.2011.151.
[21]  Berg, G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. J. Appl. Microbiol. Biotechnol. 2009, 84, 11–18, doi:10.1007/s00253-009-2092-7.
[22]  Hirsch, P.R.; Mauchline, T.H. Who’s who in the plant root microbiome? Nat. Biotechnol. 2012, 30, 961–962, doi:10.1038/nbt.2387.
[23]  K?berl, M.; Ramadan, E.M.; Ro?mann, B.; Staver, C.; Fürnkranz, M.; Lukesch, B.; Grube, M.; Berg, G. Using ecological knowledge and molecular tools to develop effective and safe biocontrol strategies. In Pesticides in the Modern World/Book 5; E-book: Rijeka, Croatia, 2012.
[24]  Van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72, doi:10.1038/23932.
[25]  Latz, E.; Eisenhauer, N.; Rall, B.C.; Allan, E.; Roscher, C.; Scheu, S.; Jousset, A. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. J. Ecol. 2012, 100, 597–604, doi:10.1111/j.1365-2745.2011.01940.x.
[26]  Opelt, K.; Berg, C.; Berg, G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol. Ecol. 2007, 61, 38–53, doi:10.1111/j.1574-6941.2007.00323.x.
[27]  Berg, G.; Hartenberger, K.; Liebminger, S.; Zachow, C. Antagonistic endophytes from mistletoes as bio-resource to control plant as well as clean room pathogens. IOBC/wprs Bull. 2012, 79, 29–32.
[28]  Zachow, C.; Berg, C.; Müller, H.; Meincke, R.; Komon-Zelazowska, M.; Druzhinina, I.S.; Kubicek, C.P.; Berg, G. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): Relationship to vegetation zones and environmental factors. ISME J. 2009, 3, 79–92, doi:10.1038/ismej.2008.87.
[29]  Mazzola, M. Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 2002, 81, 557–564, doi:10.1023/A:1020557523557.
[30]  Weller, D.M.; Raaijmakers, J.M.; McSpadden Gardener, B.B.; Thomashow, L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002, 40, 309–348, doi:10.1146/annurev.phyto.40.030402.110010.
[31]  Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.; Bakker, P.A.; et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2012, 332, 1097–1100.
[32]  Schmid, F.; Moser, G.; Müller, H.; Berg, G. Functional and structural microbial diversity in organic and conventional viticulture: Organic farming benefits natural biocontrol agents. Appl. Environ. Microbiol. 2011, 77, 2188–2191, doi:10.1128/AEM.02187-10.
[33]  K?berl, M.; Müller, H.; Ramadan, E.M.; Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 2011, 6, e24452.
[34]  Grube, M.; Cardinale, M.; Vieira de Castro Junior, J.; Müller, H.; Berg, G. Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J. 2009, 3, 1105–1115, doi:10.1038/ismej.2009.63.
[35]  Ehlers, R.U. Regulation of Biological Control Agents; Springer: Heidelberg, Germany, 2011.
[36]  Berg, G.; Eberl, L.; Hartmann, A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005, 7, 1673–1685, doi:10.1111/j.1462-2920.2005.00891.x.
[37]  Egamberdieva, D.; Kucharova, Z.; Davranov, K.; Berg, G.; Makarova, N.; Azarova, T.; Chebotar, V.; Tikhonovich, I.; Kamilova, F.; Validov, S.Z.; et al. Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol. Fertil. Soils 2011, 47, 197–205, doi:10.1007/s00374-010-0523-3.
[38]  Roder, A.; Hoffmann, E.; Hagemann, M.; Berg, G. Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol. Lett. 2005, 7, 1853–1858.
[39]  Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Berg, G.; van der Lelie, D.; Dow, J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525, doi:10.1038/nrmicro2163.
[40]  Alavi, P.; Starcher, M.R.; Zachow, C.; Müller, H.; Berg, G. Root-microbe systems: The effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front. Plant Sci. 2013, 4, 141.
[41]  Alavi, P.; Starcher, M.R.; Thallinger, G.; Zachow, C.; Müller, H.; Berg, G. Stenotrophomonas comparative genomics reveal a fine line between beneficial and pathogenic bacteria. 2013. submitted.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413