全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Enhancing the Sustainability of Quinoa Production and Soil Resilience by Using Bioproducts Made with Native Microorganisms

DOI: 10.3390/agronomy3040732

Keywords: plant growth-promoting bacteria, Trichoderma, endophytes, quinoa, Andean Altiplano, soil

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microorganisms are involved in a network of interactions with plants, promoting growth and acting as biocontrol agents against diseases. In this work, we studied native microorganisms associated with quinoa plants ( Chenopodium quinoa) and the application of these organisms to the organic production of quinoa in the Andean Altiplano. Quinoa is a non-cereal grain native to the Andean highlands and is highly nutritious and gluten-free. As such, the international demand for quinoa has increased substantially in recent years. We isolated native endophytic bacteria that are able to fix nitrogen, solubilize phosphate and synthesize a phytohormone and native strains of Trichoderma, a fungus typically used for increasing plant growth and tolerance to biotic and abiotic stresses. Greenhouse assays and field trials allowed for selecting promissory bacterial isolates, mostly belonging to Bacillus and Paenibacillus genera, that increased plant length, panicle weight and grain yield. Selected microbial isolates were large-scale multiplied in simple and inexpensive culture media and then formulated to obtain bioproducts that were distributed among local farmers. Thus, we developed a technology for the exploitation of beneficial microbes, offering promising and environmentally friendly strategies for the organic production of quinoa without perturbing the native microbial diversity of Andean soils and making them more resilient to the adverse effects of climatic change and the over-production of quinoa.

References

[1]  Food and Agriculture Organization of the United Nations. A Provisional Methodology for Soil Degradation Assessment; Food and Agriculture Organization: Rome, Italy, 1979; Volume 1, p. 84.
[2]  Wright, K.H.; Pike, O.A.; Fairbanks, D.J.; Huber, C.S. Composition of Atriplex hortensis, sweet and bitter Chenopodium quinoa seeds. J. Food Sci. 2002, 67, 1383–1385, doi:10.1111/j.1365-2621.2002.tb10294.x.
[3]  Bolivian Institute of Foreign Trade, Bolivia: Exportaciones de Quinua, CIFRAS, Biweekly Newsletter N°195, IBCE, Santa Cruz, Bolivia. Available online: http://ibce.org.bo/publicaciones-ibcecifras.php?op=1&id=123 (accessed on June 14, 2013).
[4]  Benizri, E.; Baudoin, E.; Guckert, A. Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol. Sci. Technol. 2001, 11, 557–574, doi:10.1080/09583150120076120.
[5]  Bacilio-Jimenez, M.; Aguilar-Flores, S.; Del Valle, M.V.; Perez, A.; Zepeda, A.; Zenteno, E. Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol. Biochem. 2001, 33, 167–172, doi:10.1016/S0038-0717(00)00126-7.
[6]  Cattelan, A.J.; Hartel, P.G.; Fuhrmann, J.J. Screening for plant growth-promoting rhizobacteria to promote soybean growth. Soil Sci. Soc. Am. J. 1999, 63, 1670–1680, doi:10.2136/sssaj1999.6361670x.
[7]  Fürnkranz, M.; Müller, H.; Berg, G. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect. 2009, 116, 149–155.
[8]  Timmusk, S. Mechanism of Action of the Plant Growth-Promoting Bacterium Paenibacillus polymixa. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 4 December 2003.
[9]  Bashan, Y.; Puente, M.E.; de-Bashan, L.E.; Hernandez, J.P. Environmental Uses of Plant Growth-Promoting Bacteria. In Plant-Microbe Interactions; Ait-Barka, E., Clément, C., Eds.; Research Signpost: Trivandrum, India, 2008; pp. 69–93.
[10]  Datnoff, L.E.; Pernezny, K.L. Effect of bacterial and fungal microorganisms to colonize tomato roots, improve transplant growth and control of Fusarium crown and root rot. Proc. Florida Tomato Inst. 1998, 111, 26–33.
[11]  Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25, doi:10.1099/mic.0.052274-0.
[12]  Ortu?o, N.; Claros, M. Fundación Proinpa, Cochabamba, BoliviaUnpublished work. 2010.
[13]  Nautical, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270, doi:10.1111/j.1574-6968.1999.tb13383.x.
[14]  Gordon, S.; Weber, R. Colorimetric estimation of indole acetic acid. Plant Physiol. 1951, 26, 192–195, doi:10.1104/pp.26.1.192.
[15]  Wilson, K. Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology; Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., Eds.; John Wiley & Sons: New York, NY, USA, 1994; pp. 241–245.
[16]  Melo, S.C.O.; Pungartnik, C.; Cascardo, J.C.M.; Brendel, M. Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycete Crinipellis perniciosa. Genet. Mol. Res. 2006, 5, 851–855.
[17]  Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98.
[18]  Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
[19]  International Subcommission on Trichoderma and Hypocrea website. Available online: www.isth.info (accessed on 23 July 2012).
[20]  Druzhinina, I.; Kopchinskiy, A.G.; Komon, M.; Bissett, J.; Szakacs, G.; Kubicek, C.P. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal. Genet. Biol. 2005, 42, 813–828, doi:10.1016/j.fgb.2005.06.007.
[21]  Kopchinskiy, A.; Komon, M.; Kubicek, C.P.; Druzhinina, I.S. TrichoBLAST: A multiloci database of phylogenetic markers for Trichoderma and Hypocrea powered by sequence diagnosis and similarity search tools. Mycol. Res. 2005, 109, 658–660, doi:10.1017/S0953756205233397.
[22]  Lane, D.J. 16S/23S Sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: Chichester, UK, 1991; pp. 115–175.
[23]  Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118, doi:10.1111/j.1365-294X.1993.tb00005.x.
[24]  White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322.
[25]  Chaverri, P.; Castlebury, L.A.; Overton, B.E.; Samuels, G.J. Hypocrea/Trichoderma: Species with conidiophore elongations and green conidia. Mycologia 2003, 95, 1100–1140, doi:10.2307/3761915.
[26]  Nagy, V.; Seidl, V.; Szakacs, G.; Komon-Zelazowska, M.; Kubicek, C.P.; Druzhinina, I.S. Application of DNA bar codes for screening of industrially important fungi: The haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl. Environ. Microbiol. 2007, 73, 7048–7058, doi:10.1128/AEM.00995-07.
[27]  Bartholomew, J.W.; Mittwer, T. A simplified bacterial spore stain. Stain Technol. 1950, 25, 153–156.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133