全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

DOI: 10.3390/agronomy3040757

Keywords: chitin, chitosan, plant growth-promoting rhizobacteria, induced defenses

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

References

[1]  Gooday, G.W. The ecology of chitin degradation. Adv. Microb. Ecol. 1990, 11, 387–419, doi:10.1007/978-1-4684-7612-5_10.
[2]  Gohel, V.; Singh, A.; Vimal, M.; Ashwini, P.; Chhatpar, H.S. Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr. J. Biotechnol. 2006, 5, 54–72.
[3]  Castro, S.P.M.; Paulín, E.G.L. Is chitosan a new panacea? Areas of application. the Complex World of Polysaccharides; InTech: Rijeka, Croatia, 2012. Available online: http://www.intechopen.com/books/the-complex-world-of-polysaccharides/is-chitosan-a-new-panacea-areas-of-application (accessed on 4 July 2013).
[4]  Bartnicki-Garcia, S.; Lippman, E. Fungal wall composition. In CRC Hand book of Microbiology, 2nd ed.; Laskin, A.J., Lechevalier, H.A., Eds.; CRC Press: Boca Raton, FL, USA, 1982; pp. 229–252.
[5]  Gow, N.A.R.; Gooday, G.W. Ultrastructure of chitin in hyphae of Candida albicans and other dimorphic and mycelial fungi. Protoplasma 1983, 115, 52–58, doi:10.1007/BF01293580.
[6]  Bueter, C.L.; Specht, C.A.; Levitz, S.M. Innate sensing of chitin and chitosan. PLoS Pathog. 2013, 9, e1003080, doi:10.1371/journal.ppat.1003080.
[7]  Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678, doi:10.1016/j.progpolymsci.2009.04.001.
[8]  Muzzarelli, R.A.A. Chitin; Pergamon Press: Oxford, UK, 1977.
[9]  Bo?elmann, F.; Romano, P.; Fabritius, H.; Raabe, D.; Epple, M. The composition of the exoskeleton of two crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim. Acta 2007, 463, 65–68, doi:10.1016/j.tca.2007.07.018.
[10]  Ramírez, M.á.; Rodriguez, A.T.; Alfonso, L.; Peniche, C. Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnol. Apl. 2010, 27, 270–276.
[11]  FAO. Fishery Statistical Collections; Global Aquaculture Production. Available online: http://www.fao.org/fishery/statistics/global-aquaculture-production/en (accessed on 15 May 2013).
[12]  Andrade, V.; Neto, B.; Fukushima, K.; Campos-Takaki, G. Effect of medium components and time of cultivation on chitin production by Mucor circinelloides (Mucor javanicus IFO 4570)—A factorial study. Revista Iberoamericana de Micología 2003, 20, 149–153.
[13]  Law, W.M.; Lau, W.N.; Lo, K.L.; Wai, L.M.; Chiu, S.W. Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 2003, 52, 1531–1537, doi:10.1016/S0045-6535(03)00492-2.
[14]  Crestini, C.; Kovac, B.; Giovannozzi-Sermanni, G. Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnol. Bioeng. 1996, 50, 207–210, doi:10.1002/bit.260500202.
[15]  Akin, D.E.; Condon, B.; Sohn, M.; Foulk, J.A.; Dodd, R.B.; Rigsby, L.L. Optimization for enzyme-retting of flax with pectate lyase. Ind. Crops Prod. 2007, 25, 136–146, doi:10.1016/j.indcrop.2006.08.003.
[16]  Yang, J.K.; Shih, I.L.; Tzeng, Y.M.; Wang, S.L. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Technol. 2000, 26, 406–413, doi:10.1016/S0141-0229(99)00164-7.
[17]  Hoell, I.A.; Vaaje-Kolstad, G.; Eijsink, V.G.H. Structure and function of enzymes acting on chitin and chitosan. Biotechnol. Genet. Eng. Rev. 2010, 27, 331–366, doi:10.1080/02648725.2010.10648156.
[18]  Cira, L.A.; Huerta, S.; Hall, G.M.; Shirai, K. Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem. 2002, 37, 1359–1366, doi:10.1016/S0032-9592(02)00008-0.
[19]  Bowman, K.; Leong, K.W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 2006, 1, 117–128, doi:10.2147/nano.2006.1.2.117.
[20]  Jayakumar, R.; Prabaharan, M.; Nair, S.V.; Tamura, H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol. Adv. 2010, 28, 142–150.
[21]  Towheed, T.E.; Anastassiades, T.P.; Shea, B.; Houpt, J.; Welch, V.; Hochberg, M.C. Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst. Reviews 2001, doi:10.1002/14651858.CD002946.pub.
[22]  Hirano, S.; Kitaura, S.; Sasaki, N.; Sakaguchi, H.; Sugiyama, M.; Hashimoto, K.; Tanatani, A. Chitin biodegradation and wound healing in tree bark tissues. J. Environ. Polym. Degrad. 1996, 4, 261–265, doi:10.1007/BF02070695.
[23]  Croteau, R.; Gurkewitz, S.; Johnson, M.A.; Fisk, H.J. Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol. 1987, 85, 1123–1128, doi:10.1104/pp.85.4.1123.
[24]  El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in Plant Protection. Mar. Drugs 2010, 8, 968–987, doi:10.3390/md8040968.
[25]  Harish Prashanth, K.V.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007, 18, 117–131, doi:10.1016/j.tifs.2006.10.022.
[26]  Xu, J.; Zhao, X.; Han, X.; Du, Y. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic. Biochem. Physiol. 2007, 87, 220–228, doi:10.1016/j.pestbp.2006.07.013.
[27]  Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial action of chitosan. Food Biotechnol. 1992, 6, 257–272, doi:10.1080/08905439209549838.
[28]  Kendra, D.F.; Hadwiger, L.A. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 1984, 8, 276–281.
[29]  Sekiguchi, S.; Miura, Y.; Kaneko, H.; Nishimura, S.I.; Nishi, N.; Iwase, M.; Tokura, S. Molecular weight dependency of antimicrobial activity by chitosan oligomers. In Food Hydrocolloids: Structures, Properties and Functions; Nishinari, K., Doi, E., Eds.; Plenum: New York, NY, USA, 1994; pp. 71–76.
[30]  Parra, Y.; Ramírez, M.A. Efecto de diferentes derivados de quitina sobre el crecimiento in vitro del hongo Rhizoctonia solani Kuhn. Cultivos Tropicales 2002, 23, 73–75.
[31]  Rabea, E.I.; El Badawy, M.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465, doi:10.1021/bm034130m.
[32]  Laflamme, P.; Benhamou, N.; Bussiéres, G.; Dessureault, M. Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can. J. Bot. 1999, 77, 1460–1468, doi:10.1139/cjb-77-10-1460.
[33]  Bell, A.A.; Hubbard, J.C.; Liu, L.; Davis, R.M.; Subbarao, K.V. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis. 1998, 82, 322–328, doi:10.1094/PDIS.1998.82.3.322.
[34]  Aziz, A.; Trotel-Aziz, P.; Dhuicq, L.; Jeandet, P.; Couderchet, M.; Vernet, G. Chitosan oligomers and copper sulphate induce grapevine defense reaction and resistance to grey mould and down mildew. Phytopathology 2006, 96, 1188–1194, doi:10.1094/PHYTO-96-1188.
[35]  Ben-shalom, N.; Ardi, R.; Pinto, R.; Aki, C.; Fallik, E. Controlling gray mould caused by Botyrtis cinerea in cucumber plants by means of chitosan. Crop Prot. 2003, 22, 285–290, doi:10.1016/S0261-2194(02)00149-7.
[36]  O’Herlihy, E.A.; Duffy, E.M.; Cassells, A.C. The effects of arbuscular mycorrhizal fungi band chitosan sprays on yield and late blight resistance in potato crops from microplants. Folio Geobotanica 2003, 38, 201–208.
[37]  Muzzarelli, R.A.A.; Tarsi, R.; Filippini, O.; Giovanetti, E.; Biagini, G.; Varaldo, P.E. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34, 2019–2023, doi:10.1128/AAC.34.10.2019.
[38]  Jia, Z.; Shen, D.; Xu, W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res. 2001, 333, 1–6, doi:10.1016/S0008-6215(01)00112-4.
[39]  Ferrante, P.; Scortichini, M. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol. 2010, 59, 954–962, doi:10.1111/j.1365-3059.2010.02304.x.
[40]  Vruggink, H. The effect of chitin amendment on actinomycetes in soil and on the infection of potato tubers by Streptomyces scabies. Neth. J. Plant Pathol. 1970, 76, 293–295, doi:10.1007/BF03041359.
[41]  Kulikov, S.N.; Chirkov, S.N.; Il’ina, A.V.; Lopatin, S.A.; Varlamov, V.P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prikl Biokhim Mikrobiol. 2006, 42, 224–228.
[42]  Pospieszny, H.; Chirkov, S.; Atabekov, J. Induction of antiviral resistance in plants by chitosan. Plant Sci. 1991, 79, 63–68, doi:10.1016/0168-9452(91)90070-O.
[43]  Faoro, F.; Sant, S.; Iriti, M.; Appiano, A. Chitosan-elicited resistance to plant viruses: A histochemical and cytochemical study. In Chitin Enzymology; Muzzarelli, R.A.A., Ed.; Atec: Grottammare, Italy, 2001; pp. 57–62.
[44]  Chirkov, S.N. The antiviral activity of chitosan (review). Appl. Biochem. Microbiol. 2002, 38, 1–8, doi:10.1023/A:1013206517442.
[45]  Rabea, E.I.; El Badawy, M.T.; Rogge, T.M.; Stevens, C.V.; H?fte, M.; Steurbaut, W.; Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manage. Sci. 2005, 61, 951–960, doi:10.1002/ps.1085.
[46]  Badawy, M.E.I.; El-Aswad, A.F. Insecticidal activity of chitosans of different molecular weights and chitosan-metal complexes against cotton leafworm Spodoptera littoralis and oleander aphid Aphis nerii. Plant Prot. Sci. 2012, 48, 131–141.
[47]  Gibbs, K.E.; Morrison, F.O. The cuticle of the two-spotted spider mite, Tetranychus telarius (Linnaeus) (Acarina: Tetranychidae). Can. J. Zool. 1959, 37, 633–637, doi:10.1139/z59-066.
[48]  Mothes-Wagner, U. Comparative histopathology of the chitin synthesis inhibitors nikkomycin X/Z, nikkomycin Z and polyoxin D. I: Effects on moulting, reproduction and digestion in the spider mite Tetranychus urticae. Pest Manage. Sci. 1986, 17, 607–620, doi:10.1002/ps.2780170602.
[49]  Tan, X.; Wang, S.; Li, X.; Zhang, F. Optimizing and application of microencapsulated artificial diet for Orius sauteri (Hemiptera: Anthocoridae). Acta Entomol. Sin. 2010, 53, 891–900.
[50]  Godoy, G.; Rodriguez-Kabana, R.; Shelby, R.A.; Morgan-Jones, G. Chitin amendments for control of Meloidogyne arenaria in infested soil. II. Effects on microbial population. Nematropica 1983, 13, 63–74.
[51]  Mian, I.H.; Godoy, G.; Shelby, R.A.; Rodriguez-Kabana, R.; Morgan-Jones, G. Chitin amendments for control of Meloidogyne arenaria in infested soil. Nematropica 1982, 12, 71–84.
[52]  Rodriguez-Kabana, R.; Morgan-Jones, G.; Ownley-Gintis, B. Effects of chitin amendments to soil on Heterodera glycines, microbial populations, and colonization of cysts by fungi. Nematropica 1984, 14, 10–25.
[53]  EPA. Final Registration Review Work Plan for Chitin and Chitosan 2008. Available online: http://www.epa.gov/oppsrrd1/registration_review/chitin/ (accessed on 4 July 2013).
[54]  Westerdahl, B.B.; Carlson, H.L.; Grant, J.; Radewald, J.D.; Welch, N.; Anderson, C.A.; Darso, J.; Kirby, D.; Shibuya, F. Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. J. Nematol. 1992, 24, 669–680.
[55]  Belair, G.; Tremblay, N. The influence of chitin-urea amendments applied to an organic soil on a Meloidogyne hapla population and on the growth of greenhouse tomato. Phytoprotection 1995, 76, 75–80, doi:10.7202/706087ar.
[56]  Rodriguez-Kabana, R.; Morgan-Jones, G.; Chet, I. Biological control of nematodes: Soil amendments and microbial antagonists. Plant Soil 1987, 100, 237–247, doi:10.1007/BF02370944.
[57]  Duncan, L.W. Current options for nematode management. Annu. Rev. Phytopathol. 1991, 29, 469–490, doi:10.1146/annurev.py.29.090191.002345.
[58]  Stirling, G.R. Biological Control of Plant-Parasitic Nematodes; CAB International: Wallingford, UK, 1991.
[59]  Hamid, R.; Khan, M.A.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J.; Javed, S. Chitinases: An update. J. Pharm. BioAllied Sci. 2013, 5, 21–29.
[60]  Ayes, M.D.; Howard, S.C.; Kuzio, J.; Lopez-Ferber, M.; Possee, R.D. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 1994, 202, 586–605, doi:10.1006/viro.1994.1380.
[61]  Maksimov, I.V.; Abizgil’dina, R.R.; Pusenkova, L.I. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Appl. Biochem. Microbiol. 2011, 47, 333–345, doi:10.1134/S0003683811040090.
[62]  Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B. 2011, 366, 1987–1998, doi:10.1098/rstb.2010.0390.
[63]  Chen, F.; Wang, M.; Zheng, Y.; Luo, J.; Yang, X.; Wang, X. Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579. World J. Microbiol. Biotechnol. 2010, 26, 675–684, doi:10.1007/s11274-009-0222-0.
[64]  Manjula, K.; Podile, A.R. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can. J. Microbiol. 2001, 47, 618–625.
[65]  Lowe, A.; Rafferty-McArdle, S.M.; Cassells, A.C. Effects of AMF- and PGPR-root inoculation and a foliar chitosan spray in single and combined treatments on powdery mildew disease in strawberry. Agric. Food Sci. 2012, 21, 28–38.
[66]  Toyoda, H.; Matsuda, Y.; Fukamizo, T.; Nonomura, T.; Kukutani, K.; Ouchi, S. Application of chitin and chitosan degrading microbes to comprehensive biocontrol of fungal wilt pathogen, Fusarium oxysporum. In Chitin Handbook; Muzzarelli, R.A.A., Peter, M.G., Eds.; European Chitin Society, Atec: Grottammare, Italy, 1996; pp. 359–370.
[67]  Singh, P.P.; Shin, Y.C.; Park, C.S.; Chung, Y.R. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 1999, 89, 92–99, doi:10.1094/PHYTO.1999.89.1.92.
[68]  Kishore, G.K.; Pande, S.; Podile, A.R. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defense-related enzymes. J. Phytopathol. 2005, 153, 169–173, doi:10.1111/j.1439-0434.2005.00951.x.
[69]  Gooday, G.W. Physiology of microbial degradation of chitin and chitosan. Biodegradation 1990, 1, 177–190, doi:10.1007/BF00058835.
[70]  Sivan, A.; Chet, I. Degradation of fungal cell walls by lytic enzymes of Trichoderma haryianam. J. Gen. Microbiol. 1989, 135, 675–682.
[71]  Lorito, M.; Harman, G.E.; Hayes, C.K.; Broadway, R.M.; Tronsmo, A.; Woo, S.L.; Di-Pietro, A. Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 1993, 83, 302–307, doi:10.1094/Phyto-83-302.
[72]  Sid Ahmed, A.; Ezziyyani, M.; Pérez Sánchez, C.; Candela, M.E. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur. J. Plant Pathol. 2003, 109, 633–637, doi:10.1023/A:1024734216814.
[73]  López-Cervantes, J.; Rochin, K.R.F. Microbial Process and Composition for Agricultural Use. US 2012/0084886 A1, 5 April 2012.
[74]  John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, R.Y.; Prévost, D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 2011, 31, 211–226, doi:10.3109/07388551.2010.513327.
[75]  El-Sayed, G.N.; Coudron, T.A.; Ignoffo, C.M. Chitinolytic activity and virulence associated with native and mutant isolates of the entomopathogenic fungus, Nomumea ileyi. J. Invertebr. Pathol. 1989, 54, 394–403, doi:10.1016/0022-2011(89)90124-9.
[76]  St Leger, R.J.; Cooper, R.M.; Charnley, A.K. Characterization of chitinase and chitobiase produced by the entomopathogenic fungus Metarhizium anisopliae. J. Invertebr. Pathol. 1991, 58, 415–426, doi:10.1016/0022-2011(91)90188-V.
[77]  Gill, S.S.; Cowles, E.A.; Pietrantonio, P.V. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 1992, 37, 615–636, doi:10.1146/annurev.en.37.010192.003151.
[78]  Arora, N.; Sachdev, B.; Gupta, R.; Vimala, Y.; Bhatnagar, R.K. Characterization of a chitin-binding protein from Bacillus thuringiensis HD-1. PLoS One 2013, 8, e66603, doi:10.1371/journal.pone.0066603.
[79]  Ortiz-Rodríguez, T.; De La Fuente-Salcido, N.; Bideshi, D.K.; Salcedo-Hernández, R.; Barboza-Corona, J.E. Generation of chitin-derived oligosaccharides toxic to pathogenic bacteria using ChiA74, an endochitinase native to Bacillus thuringiensis. Lett. Appl. Microbiol. 2010, 51, 184–190.
[80]  Smirnoff, W.A. Three year of aerial field experiments with Bacillus thuringiensis plus chitinase formulation against the spruce bud worm. J. Invertebr. Pathol. 1974, 24, 344–348, doi:10.1016/0022-2011(74)90142-6.
[81]  Gao, Y.; Oppert, B.; Lord, J.C.; Liu, C.; Lei, Z. Bacillus thuringiensis Cry3Aa toxin increases the susceptibility of Crioceris quatuordecimpunctata to Beauveria bassiana infection. J. Invertebr. Pathol. 2012, 109, 260–263, doi:10.1016/j.jip.2011.12.003.
[82]  Wraight, S.P.; Ramos, M.E. Synergistic interaction between Beauveria bassiana- and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. J. Invertebr. Pathol. 2005, 90, 139–150, doi:10.1016/j.jip.2005.09.005.
[83]  Lo Scrudato, M.; Blokesch, M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 2013, 41, 3644–3658, doi:10.1093/nar/gkt041.
[84]  Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350, doi:10.1007/s11274-011-0979-9.
[85]  Rudrappa, T.; Biedrzycki, M.L.; Bais, H.P. Causes and consequences of plant‐associated biofilms. FEMS Microbiol. Ecol. 2008, 64, 153–166, doi:10.1111/j.1574-6941.2008.00465.x.
[86]  Thomas, C.J.; Brown, H.L.; Hawes, C.R.; Lee, B.Y.; Min, M.K.; King, L.A.; Possee, R.D. Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J. Virol. 1998, 72, 10207–10212.
[87]  Gopalakrishnan, B.; Muthukrishnan, S.; Kramer, K.J. Baculovirus-mediated expression of a Manduca sexta chitinase gene: Properties of the recombinant protein. Insect Biochem. Mol. Biol. 1995, 25, 255–265, doi:10.1016/0965-1748(94)00070-X.
[88]  Moscardi, F.; de Souza, M.L.; de Castro, M.E.B.; Moscardi, M.L.; Szewczyk, B. Baculovirus pesticides: Present state and future perspectives. In Microbes and Microbial Technology; Springer: New York, NY, USA, 2011; pp. 415–445.
[89]  Staehelin, C.; Schultze, M.; Tokuyasu, K.; Poinsot, V.; Promé, J.C.; Kondorosi, E.; Kondorosi, A. N-deacetylation of Sinorhizobium meliloti Nod factors increases their stability in the Medicago sativa rhizosphere and decreases their biological activity. Mol. Plant-Microbe Interact. 2000, 13, 72–79, doi:10.1094/MPMI.2000.13.1.72.
[90]  Berry, A.M.; McIntyre, L.; McCully, M.E. Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can. J. Bot. 1986, 64, 292–305, doi:10.1139/b86-043.
[91]  Normand, P.; Lapierre, P.; Tisa, L.S.; Gogarten, J.P.; Alloisio, N.; Bagnarol, E.; Bassi, C.A.; Berry, A.M.; Bickhart, D.M.; Choisne, N. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 2007, 17, 7–15.
[92]  Cérémonie, H.; Debelle, F.; Fernandez, M.P. Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can. J. Bot. 1999, 77, 1293–1301.
[93]  Fitter, A.H.; Moyersoen, B. Evolutionary trends in root-microbe symbioses. Philosophical Philos. Trans. R. Soc. B. 1996, 351, 1367–1375, doi:10.1098/rstb.1996.0120.
[94]  Gryndler, M.; Jansa, J.; Hr?elová, H.; Chvátalová, I.; Vosátka, M. Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl. Soil Ecol. 2003, 22, 283–287, doi:10.1016/S0929-1393(02)00154-3.
[95]  Abdel-Fattah, G.M.; Mohamedin, A.H. Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol. Fertil. Soils 2000, 32, 401–409, doi:10.1007/s003740000269.
[96]  El-Sayed, E.S.A.; El-Didamony, G.; El-Sayed, E.F. Effects of mycorrhizae and chitin-hydrolysing microbes on Vicia faba. World J. Microbiol. Biotechnol. 2002, 18, 505–515, doi:10.1023/A:1016389630340.
[97]  Maillet, F.; Poinsot, V.; André, O.; Puech-Pagès, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhizae. Nature 2011, 469, 58–63, doi:10.1038/nature09622.
[98]  Oláh, B.; Brière, C.; Bécard, G.; Dénarié, J.; Gough, C. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 2005, 44, 195–207, doi:10.1111/j.1365-313X.2005.02522.x.
[99]  Schultze, M.; Kondorosi, A. The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr. Opin. Genet. Dev. 1996, 6, 631–638, doi:10.1016/S0959-437X(96)80094-3.
[100]  Salzer, P.; Bonanomi, A.; Beyer, K.; V?geli-Lange, R.; Aeschbacher, R.A.; Lange, J.; Wiemken, A.; Kim, D.; Cook, D.R.; Boller, T. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol. Plant-Microbe Interact. 2000, 13, 763–777, doi:10.1094/MPMI.2000.13.7.763.
[101]  Garcia-Brugger, A.; Lamotte, O.; Vandelle, E.; Bourque, S.; Lecourieux, D.; Poinssot, B.; Wendehenne, D.; Pugin, A. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 2006, 19, 711–724, doi:10.1094/MPMI-19-0711.
[102]  Kaku, H.; Nishizawa, Y.; Minami, N.I.; Tomiyama, C.A.; Dohmae, N.; Takio, K.; Manami, E.; Shibuya, N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 11086–11091, doi:10.1073/pnas.0508882103.
[103]  Day, R.B.; Okada, M.; Ito, Y.; Tsukada, K.; Zaghouani, H.; Shibuya, N.; Stacey, G. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol. 2001, 26, 1162–1173.
[104]  Miya, A.; Albert, P.; Shinya, T.; Desaki, Y.; Ichimura, K.; Shirasu, K.; Narusaka, Y.; Kawakami, N.; Kaku, H.; Shibuya, N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsi. Proc. Natl. Acad. Sci. USA 2007, 104, 19613–19618, doi:10.1073/pnas.0705147104.
[105]  Shinya, T.; Motoyama, N.; Ikeda, A.; Wada, M.; Kamiya, K.; Hayafune, M.; Kaku, H.; Shibuya, N. Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. 2012, 53, 1696–1706, doi:10.1093/pcp/pcs113.
[106]  Nojiri, H.; Sugimori, M.; Yamane, H.; Nishimura, Y.; Yamada, A.; Shibuya, N.; Kodama, O.; Murofushi, N.; Ohmori, T. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 1996, 110, 387–392.
[107]  Ott, P.G.; Varga, G.J.; Szatmári, A.; Bozsó, Z.; Klement, E.; Medzihradszky, K.F.; Besenyei, E.; Czelleng, A.; Klement, Z. Novel extracellular chitinases rapidly and specifically induced by general bacterial elicitors and suppressed by virulent bacteria as a marker of early basal resistance in tobacco. Mol. Plant-Microbe Interact. 2006, 19, 161–172, doi:10.1094/MPMI-19-0161.
[108]  Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.H.J.; Talbot, N.J. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell 2012, 24, 322–335, doi:10.1105/tpc.111.092957.
[109]  Fujikawa, T.; Sakaguchim, A.; Nishizawa, Y.; Kouzai, Y.; Minami, E.; Yano, S.; Koga, H.; Meshi, T.; Nishimura, M. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 2012, 8, e1002882, doi:10.1371/journal.-ppat.1002882.
[110]  Minami, E.; Kuchitsu, K.; He, D.Y.; Kouchi, H.; Midoh, N.; Ohtsuki, Y.; Shibuya, N. Two novel genes rapidly and transiently activated in suspension-cultured rice cells by treatment with N-acetylchitoheptaose, a biotic elicitor for phytoalexin production. Plant Cell Physiol. 1996, 37, 563–567, doi:10.1093/oxfordjournals.pcp.a028981.
[111]  Nishizawa, Y.; Kawakami, A.; Hibi, T.; He, D.Y.; Shibuya, N.; Minami, E. Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol. Biol. 1999, 39, 907–914, doi:10.1023/A:1006161802334.
[112]  Takai, R.; Hasegawa, K.; Kaku, K.; Shibuya, N.; Minami, E. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci. 2001, 160, 577–583, doi:10.1016/S0168-9452(00)00390-3.
[113]  Rakwal, R.; Tamogami, S.; Agrawal, G.K.; Iwahashi, H. Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem. Biophys. Res. Commun. 2002, 295, 1041–1045, doi:10.1016/S0006-291X(02)00779-9.
[114]  Doares, S.H.; Syrovets, T.; Weiler, E.W.; Ryan, C.A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 1995, 92, 4095–4098, doi:10.1073/pnas.92.10.4095.
[115]  Bohland, C.; Balkenhohl, T.; Loers, G.; Feussner, I.; Grambow, H.J. Differential induction of lipoxygenase isoforms in wheat upon treatment with rust fungus elicitor, chitin oligosaccharides, chitosan and methyl jasmonate. Plant Physiol. 1997, 114, 679–685.
[116]  Linden, J.C.; Phisalaphong, M. Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus Canadensis. Plant Sci. 2000, 158, 41–51, doi:10.1016/S0168-9452(00)00306-X.
[117]  Walker-Simmons, M.; Jin, D.; West, C.A.; Hadwiger, L.; Ryan, C.A. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments and chitosans. Plant Physiol. 1984, 76, 833–836, doi:10.1104/pp.76.3.833.
[118]  Farmer, E.E.; Ryan, C.A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 1992, 4, 129–134.
[119]  Iriti, M.; Faoro, F. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol. Biochem. 2008, 46, 1106–1111, doi:10.1016/j.plaphy.2008.08.002.
[120]  Bittelli, M.; Flury, M.; Campbell, G.S.; Nichols, E.J. Reduction of transpiration through foliar application of chitosan. Agr. Forest. Meteorol. 2001, 107, 167–175, doi:10.1016/S0168-1923(00)00242-2.
[121]  Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329, doi:10.1038/nature05286.
[122]  Vasyukova, N.I.; Zinoveva, L.I.; I?inskaya, E.A.; Perekhod, G.I.; Chalenko, N.G.; I?ina, A.V.; Varlamov, V.P.; Ozeretskovskaya, O.L. Modulation of plant resistance to diseases by water-soluble chitosan. Appl. Biochem. Microbiol. 2001, 37, 103–109, doi:10.1023/A:1002865029994.
[123]  Kuchitsu, K.; Kikuyama, M.; Shibuya, N. N-Acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells. Protoplasma 1993, 174, 79–81, doi:10.1007/BF01404046.
[124]  El Hassni, M.; El Hadrami, A.; Daayf, F.; Chérif, M.; Ait Barka, E.; El Hadrami, I. Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defense reactions in date palm roots. Phytopathol. Mediterr. 2004, 43, 195–204.
[125]  Kuchitsu, K.; Kosaka, H.; Shiga, T.; Shibuya, N. EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 1995, 188, 138–142, doi:10.1007/BF01276805.
[126]  Amborabé, B.-E.; Bonmort, J.; Fleurat-Lessard, P.; Roblin, G. Early events induced by chitosan on plant cells. J. Exp. Bot. 2008, 59, 2317–2324, doi:10.1093/jxb/ern096.
[127]  K?hle, H.; Jeblick, W.; Poten, F.; Blaschek, W.; Kauss, H. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol. 1985, 77, 544–551, doi:10.1104/pp.77.3.544.
[128]  Pearce, R.B.; Ride, J.P. Chitin and related compounds as elicitors of the lignification response in wounded wheat leaves. Physiol. Plant Pathol. 1982, 20, 119–123, doi:10.1016/0048-4059(82)90030-3.
[129]  Lafontaine, J.P.; Benhamou, N. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicislycopersici. Biocontrol Sci. Tech. 1996, 6, 111–124, doi:10.1080/09583159650039575.
[130]  Shigo, A.L. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu. Rev. Phytopathol. 1984, 22, 189–214, doi:10.1146/annurev.py.22.090184.001201.
[131]  Vasil’ev, L.A.; Dzyubinskaya, E.V.; Zinovkin, R.A.; Kiselevsky, D.B.; Lobysheva, N.V.; Samuilov, V.D. Chitosan-induced programmed cell death in plants. Biochemistry (Moscow Russ. Fed.) 2009, 74, 1035–1043, doi:10.1134/S0006297909090120.
[132]  Lizama-Uc, G.; Estrada-Mota, I.A.; Caamal-Chan, M.G.; Souza-Perera, R.; Oropeza-Salín, C.; Islas-Flores, I.; Zú?iga-Aguilar, J.J. Chitosan activates a MAP-kinase pathway and modifies abundance of defense-related transcripts in calli of Cocos nucifera L. Physiol. Mol. Plant Pathol. 2007, 70, 130–141, doi:10.1016/j.pmpp.2007.08.001.
[133]  Schlumbaum, A.; Mauch, F.; Vogeli, U.; Boller, T. Plant chitinases are potent inhibitors of fungal growth. Nature 1986, 324, 365–367, doi:10.1038/324365a0.
[134]  Herrera-Estrella, A.; Chet, I. Chitinases in biological control. Experientia. Suppl. 1999, 87, 171–184.
[135]  Kramer, K.J.; Muthukrishnan, S.; Lowell, J.; White, F. Chitinases for insect control. In Advances in Insect Control: The Role of Transgenic Plants; Carozzi, N., Koziel, M., Eds.; Taylor and Francis: Bristol, UK, 1997; pp. 185–193.
[136]  Huang, J.K.; Wen, L.; Swegle, M.; Tran, H.C.; Thin, T.H.; Naylor, H.M.; Muthukrishnan, S.; Reeck, G.R. Nucleotide sequence of a rice genomic clone that encodes a class I endochitinase. Plant Mol. Biol. 1991, 16, 479–480, doi:10.1007/BF00023999.
[137]  Ding, X.; Gopalakrishnan, B.; Johnson, L.B.; White, F.F.; Wang, X.; Morgan, T.D.; Kramer, K.J.; Muthukrishnan, S. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res. 1998, 7, 77–84, doi:10.1023/A:1008820507262.
[138]  Someya, N.; Akutsu, K. Biocontrol of plant diseases by genetically modified microorganisms: Current status and future prospects. In PGPR: Biocontrol and Biofertilization; Siddiqui, Z.A., Ed.; Springer: Dordrecht, the Netherlands, 2006; pp. 297–312.
[139]  Sitrit, Y.; Barak, Z.; Kapulnik, Y.; Oppenheim, A.B.; Chet, I. Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol. Plant-Microbe Interact. 1993, 6, 293–298, doi:10.1094/MPMI-6-293.
[140]  Downing, K.J.; Thomson, J.A. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can. J. Microbiol. 2000, 46, 363–369.
[141]  Lopez, O.; Fernandez-Bolanos, J.G.; Gil, M.V. New trends in pest control: the search for greener insecticides. Green Chem. 2005, 7, 431–442, doi:10.1039/b500733j.
[142]  Abou-Elghar, G.E.; Fujiyoshi, P.; Matsumura, F. Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem. Mol. Biol. 2004, 34, 743–752, doi:10.1016/j.ibmb.2004.03.009.
[143]  EPA. Green Chemistry, Designing Safer Chemicals Award 2000. Available online: http://www.epa.gov/gcc/dsca00.html (accessed on 4 July 2013).
[144]  Bayoumi, A.E.; Pérez-Pertejo, Y.; Zidan, H.Z.; Bala?a-Fouce, R.; Ordó?ez, C.; Ordó?ez, D. Cytotoxic effects of two antimolting insecticides in mammalian CHO-K1 cells. Ecotoxicol. Environ. Saf. 2003, 55, 19–23, doi:10.1016/S0147-6513(02)00068-4.
[145]  Peppuy, A.; Robert, A.; Delbecque, J.P.; Leca, J.L.; Rouland, C.; Bordereau, C. Efficacy of hexaflumuron against the fungus-growing termite Pseudacanthotermes spiniger (Sj?stedt) (isopteran, macrotermitinae). Pest Manage. Sci. 1998, 54, 22–26, doi:10.1002/(SICI)1096-9063(199809)54:1<22::AID-PS785>3.0.CO;2-I.
[146]  Liu, T.X.; Stansly, P.A. Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera Coccinellidae) predator whiteflies (Homoptera Aleyrodidae). Biol. Control 2004, 30, 298, doi:10.1016/j.biocontrol.2004.01.007.
[147]  Berecibar, A.; Granjean, C.; Siriwardena, A. Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: Mannostatins, trehazolin, allosamidins, and their analogues. Chem. Rev. 1999, 99, 779–844, doi:10.1021/cr980033l.
[148]  Soderlund, D.M.; Clark, J.M.; Sheets, L.P.; Mullin, L.S.; Piccirillo, V.J.; Sargent, D.; Stevens, J.T.; Weiner, M.L. Mechanisms of pyrethroid neurotoxicity: Implications for cumulative risk assessment. Toxicology 2002, 171, 3–59, doi:10.1016/S0300-483X(01)00569-8.
[149]  Cohen, E. Chitin synthesis and inhibition: a revisit. Pest Manage. Sci. 2001, 57, 946–950, doi:10.1002/ps.363.
[150]  Tang, B.; Wei, P.; Chen, J.; Wang, S.G.; Zhang, W.Q. Progress in gene features and functions of insect trehalases. Acta Entomol. Sin. 2012, 55, 1315–1321.
[151]  Qian, X.; Liu, Z.; Li, Z.; Song, G. Synthesis and quantitative structure-activity relationships of fluorine-containing 4,4-dihydroxylmethyl-2-aryliminooxazo (thiazo) lidines as trehalase inhibitors. J. Agric. Food Chem. 2001, 49, 5279–5284, doi:10.1021/jf010632k.
[152]  Crimmins, M.T.; Tabet, E.A. Formal total synthesis of (+)-trehazolin. Application of an asymmetric Aldol-Olefin metathesis approach to the synthesis of functionalized cyclopentenes. J. Org. Chem. 2001, 66, 4012–4018, doi:10.1021/jo015568k.
[153]  Ando, O.; Satake, H.; Itoi, K.; Sato, A.; Nakajima, M.; Takahashi, S.; Haruyama, H.; Ohkuma, J.; Kinoshita, I.; Enokita, R. Trehazolin, a new trehalase inhibitor. J. Antibiot. 1991, 4, 1165–1168.
[154]  Hirsch, A.M.; Valdés, M. Micromonospora: An important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol. Biochem. 2010, 42, 536–542, doi:10.1016/j.soilbio.2009.11.023.
[155]  Gaughran, J.P.; Lai, M.H.; Kirsch, D.R.; Silverman, S.J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J. Bacteriol. 1994, 176, 5857–5860.
[156]  Li, R.K.; Rinaldi, M.G. In vitro antifungal activity of nikkomycin Z in combination with fluconazole or itraconazole. Antimicrob. Agents Chemother. 1999, 43, 1401–1405.
[157]  EPA. Consideration of Eligibility for Registration of the New Pesticide Active Ingredient Polyoxin D Zinc Salt-DECISION MEMORANDUM 2003. Available online: http://www.epa.gov/pesticides/chem_search/reg_actions/registration/related_PC-230000_1-Jul-03.pdf (accessed on 4 July 2013).
[158]  Bixby-Brosi, A.J.; Potter, D.A. Can a chitin-synthesis-inhibiting turfgrass fungicide enhance black cutworm susceptibility to a baculovirus? Pest Manage. Sci. 2012, 68, 324–329, doi:10.1002/ps.2252.
[159]  Tsugita, T.; Takahashi, K.; Muraoka, T.; Fukui, H. The application of chitin/chitosan for agriculture(in Japanese). In Proceedings of Special Session of the 7th Symposium on Chitin and Chitosan; Japanese Society for Chitin and Chitosan: Fukui, Japan, 1993; pp. 21–22.
[160]  Lee, Y.S.; Kim, Y.H.; Kim, S.B. Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience 2005, 40, 1333–1335.
[161]  Kim, H.J.; Chen, F.; Wang, X.; Rajapakse, N.C. Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). J. Agric. Food Chem. 2005, 53, 3696–3701, doi:10.1021/jf0480804.
[162]  Ait Barka, E.; Eullaffroy, P.; Clément, C.; Vernet, G. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep. 2004, 22, 608–614, doi:10.1007/s00299-003-0733-3.
[163]  Wanichpongpan, P.; Suriyachan, K.; Chandrkrachang, S. Effects of Chitosan on the growth of Gerbera flower plant (Gerbera jamesonii). In , Proceedings of the Eighth International Chitin and Chitosan Conference and Fourth Asia Pacific Chitin and Chitosan Symposium, Yamaguchi, Japan, 21–23 September 2000; Uragami, T., Kurita, K., Fukamizo, T., Eds.; pp. 198–201.
[164]  Chandrkrachang, S. The applications of chitin in agriculture in Thailand. Adv. Chitin Sci. 2002, 5, 458–462.
[165]  Pornpeanpakdee, P.; Pichyangkura, R.; Chadchawan, S.; Limpanavech, P. Chitosan effects on Dendrobium ‘Eiskul’ Protocorm-like body production. In Proceedings of the 31st Congress on Science and Technology of Thailand, Nakornrachaseema, Thailand, 18–20 October 2005; pp. 1–3.
[166]  Nahar, S.J.; Kazuhiko, S.; Haque, S.M. Effect of Polysaccharides Including Elicitors on Organogenesis in Protocorm-like Body (PLB) of Cymbidium insigne in vitro. J. Agric. Sci. Technol. 2012, 2, 1029–1033.
[167]  Chibu, H.; Shibayama, H.; Arima, S. Effects of chitosan application on the shoot growth of rice and soybean. Jpn. J. Crop Sci. 2002, 71, 206–211.
[168]  Khan, W.; Prithiviraj, B.; Smith, D.L. Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynth. Res. 2002, 40, 621–624, doi:10.1023/A:1024320606812.
[169]  Sauerwein, M.; Flores, H.M.; Yamazaki, T.; Shimomura, K. Lippia dulcis shoot cultures as a source of the sweet sesquiterpene hernandulcin. Plant Cell Rep. 1991, 9, 663–666.
[170]  Herde, O.; Pe?a-cortés, H.; Willmitzer, L.; Fisahn, J. Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ. 1997, 20, 136–141.
[171]  Issak, M.; Okuma, E.; Munemasa, S.; Nakamura, Y.; Mori, I.C.; Murata, Y. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2013, 77, 1111–1113, doi:10.1271/bbb.120980.
[172]  Limpanavech, P.; Pichyangkura, R.; Khunwasi, C.; Chadchawan, S.; Lotrakul, P.; Bunjongrat, P.; Chaidee, A.; Akaraeakpanya, T. The effects of polymer type, concentration and %DD of bicatalyte modigied chitosan on flora production of Dendrobium ‘Eiskul’. In Proceedings of the National chitin-chitosan conference, Chulalongkorn University, Bangkok, Thailand, 17–18 July 2003; pp. 60–64.
[173]  Utsunomiya, N.; Kinai, H. Effect of chitosan-oligosaccharides soil conditioner on the growth of passionfruit. J. Jpn. Soc. Hortic. Sci. 1994, 64, 176–177.
[174]  Ohta, K.; Tanguchi, A.; Konishi, N.; Hosoki, T. Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience 1999, 34, 233–234.
[175]  Uddin, A.F.M.J.; Hashimoto, F.; Shimiza, K.; Sakata, Y. Monosaccharides and chitosan sensing in bud growth and petal pigmentation in Eustoma grandiflorum (Raf.) Shinn. Sci. Hortic. 2004, 100, 127–138, doi:10.1016/j.scienta.2003.08.014.
[176]  Grover, A. Plant chitinases: genetic diversity and physiological roles. Crit. Rev. Plant Sci. 2012, 31, 57–73, doi:10.1080/07352689.2011.616043.
[177]  Guan, Y.J.; Hu, J.; Wang, X.J.; Shao, C.X. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. B. 2009, 10, 427–433, doi:10.1631/jzus.B0820373.
[178]  Bhaskara Reddy, M.V.; Arul, J.; Angers, P.; Couture, L. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem. 1999, 47, 1208–1216, doi:10.1021/jf981225k.
[179]  Manjula, K.; Podile, A.R. Increase in seedling emergence and dry weight of pigeon pea in the field with chitin-supplemented formulations of Bacillus subtilis AF 1. World J. Microbiol. Biotechnol. 2005, 21, 1057–1062, doi:10.1007/s11274-004-8148-z.
[180]  Malfanova, N.; Kamilova, F.; Validov, S.; Shcherbakov, A.; Chebotar, V.; Tikhonovich, I.; Lugtenberg, B. Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb. Biotechnol. 2011, 4, 523–532, doi:10.1111/j.1751-7915.2011.00253.x.
[181]  Yen, M.T.; Mau, J.L. Selected physical properties of chitin prepared from shiitake stipes. Food Sci. Technol. 2007, 40, 558–563.
[182]  White, R.E. Principles and Practice of Soil Science: The Soil as a Natural Resource, 4th ed. ed.; Blackwell: Oxford, UK, 2006.
[183]  Spiegel, Y.; Kafkafi, U.; Pressman, E. Evaluation of a protein-chitin derivative of crustacean shells as a slow-release nitrogen fertilizer on Chinese cabbage. J. Hortic. Sci. 1988, 63, 621–628.
[184]  Roberts, P.; Jones, D.L. Microbial and plant uptake of free amino sugars in grassland soils. Soil Biol. Biochem. 2012, 49, 139–149, doi:10.1016/j.soilbio.2012.02.014.
[185]  Yaroslavtsev, A.; Manucharova, N.; Stepanov, A.; Zvyagintsev, D.; Sudnitsyn, I. Microbial destruction of chitin in soils under different moisture conditions. Eurasian Soil Sci. 2009, 42, 797–806, doi:10.1134/S1064229309070114.
[186]  Sinsabaugh, R.L.; Antibus, R.K.; Linkins, A.E.; McClaugherty, C.A.; Rayburn, L.; Repert, D.; Weiland, T. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 1993, 74, 1586–1593, doi:10.2307/1940086.
[187]  Rich, J.R.; Hodge, C.H. Utilization of blue crab scrap compost to suppress Meloidogyne javanica on tomato. Nematropica 1993, 23, 1–5.
[188]  Bohn, H.L.; Myer, R.A.; O’Connor, G.A. Soil Chemistry; John Wiley & Sons: New Jersey, NJ, USA, 2002.
[189]  Sukwattanasinitt, M.; Klaikherd, A.; Skulnee, K.; Aiba, S. Chitosan as releasing device for 2,4-D herbicide. In , Proceedings of the Eighth International Chitin and Chitosan Conference and Fourth Asia Pacific Chitin and Chitosan Symposium, Yamaguchi, Japan, 21–23 September 2000; Uragami, K., kurita, K., Fukamizo, T., Eds.; pp. 198–201.
[190]  Hadwiger, L.A.; McBride, P.O. Low-level copper plus chitosan applications provide protection against late blight of potato. Plant Health Progress, 2006. Available online: http://www.plantmanagementnetwork.org/pub/php/research/2006/chitosan (accessed on 23 August 2013).
[191]  Tamura, H.; Nagahama, H.; Tokura, S. Preparation of chitin hydrogel under mild conditions. Cellulose 2006, 13, 357–364, doi:10.1007/s10570-006-9058-z.
[192]  Jamnongkan, T.; Kaewpirom, S. Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J. Polym. Environ. 2010, 18, 413–421, doi:10.1007/s10924-010-0228-6.
[193]  Wu, L.; Liu, M.; Liang, R. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour. Technol. 2008, 99, 547–554, doi:10.1016/j.biortech.2006.12.027.
[194]  Xie, W.; Xu, P.; Liu, Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 2001, 11, 1699–1701, doi:10.1016/S0960-894X(01)00285-2.
[195]  Sun, T.; Zhou, D.; Xie, J.; Mao, F. Preparation of chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol. 2006, 225, 451–456.
[196]  Sun, T.; Yao, Q.; Zhou, D.; Mao, F. Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg. Med. Chem. Lett. 2008, 18, 5774–5776, doi:10.1016/j.bmcl.2008.09.072.
[197]  Chen, W.G.; Liu, X.; Chen, H.X. Preparation of modified chitosan with quaternary ammonium salt. Textile Bioengineering and Informatics Symposium Proceedings 2009, 1, 226–230.
[198]  Boonlertnirun, S.; Sarobol, E.D.; Meechoui, S.; Sooksathan, I. Drought recovery and grain yield potential of rice after chitosan application. Kasetsart J. Nat. Sci. 2007, 41, 1–6.
[199]  Maruca, R.; Suder, B.J.; Wightman, J.P. Interaction of heavy metals with chitin and chitosan. III. Chromium. J. Appl. Polym. Sci. 1982, 27, 4827–4837, doi:10.1002/app.1982.070271227.
[200]  Correa-Murrieta, M.A.; López-Cervantes, J.; Sánchez-Machado, D.I.; Sánchez-Duarte, R.G.; Rodríguez-Nú?ez, J.R.; Nú?ez-Gastélum, J.A. Fe(II) and Fe(III) adsorption by chitosan-tripolyphosphate beads: Kinetic and equilibrium studies. J. Water Supply Res. Technol. AQUA 2012, 61, 331–341, doi:10.2166/aqua.2012.048.
[201]  Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 2003, 97, 219–243, doi:10.1016/S0304-3894(02)00263-7.
[202]  Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479, doi:10.1016/S0043-1354(98)00475-8.
[203]  Sánchez-Duarte, R.G.; Sánchez-Machado, D.I.; López-Cervantes, J.; Correa-Murrieta, M.A. Adsorption of allura red dye by cross-linked chitosan from shrimp waste. Water Sci. Technol. 2012, 65, 618–623, doi:10.2166/wst.2012.900.
[204]  Wang, F.Y.; Lin, X.G.; Yin, R. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens—A field case. Environ. Pollut. 2007, 147, 248–255, doi:10.1016/j.envpol.2006.08.005.
[205]  Angelim, A.L.; Costa, S.P.; Farias, B.C.; Aquino, L.F.; Melo, V.M. An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. J. Environ. Manage. 2013, 127, 10–17, doi:10.1016/j.jenvman.2013.04.014.
[206]  Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguéz, M.S. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int. Biodeterior. Biodegrad. 2006, 57, 222–228, doi:10.1016/j.ibiod.2006.02.009.
[207]  El Ghaouth, A.; Arul, J.; Asselin, A.; Benhamou, N. Antifungal activity of chitosan on postharvest pathogens: Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol. Res. 1992, 96, 769–779, doi:10.1016/S0953-7562(09)80447-4.
[208]  Palma-Guerrero, J.; Jansson, H.B.; Salinas, J.; Lopez-Llorca, L.V. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J. Appl. Microbiol. 2008, 104, 541–553.
[209]  Benhamou, N.; Lafontaine, P.J.; Nicole, M. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 1994, 84, 1432–1444, doi:10.1094/Phyto-84-1432.
[210]  Scorza, R.; Callahan, A.; Levy, L.; Damsteegt, V.; Webb, K.; Ravelonandro, M. Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res. 2001, 10, 201–209, doi:10.1023/A:1016644823203.
[211]  Levy, L.; Damsteegt, V.; Scorza, R.; Kolber, M. Plum pox potyvirus disease of stone fruits. American Phytopathology Society, 2000. Available online: http://www.apsnet.org/online/feature/plumpox (accessed on 10 July 2013).
[212]  Pitta-Alavarez, S.; Giulietti, A.M. Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production on transformed roots of Brugmansia candida Effect of medium pH and growth phase. In Vitro Cell. Dev. Biol. Plant 1999, 59, 31–38.
[213]  Sevón, N.; Hiltunen, R.; Oksman-Caldentey, K.M. Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharm. Pharmacol. Lett. 1992, 2, 96–99.
[214]  Merkli, A.; Christen, P.; Kapetanidis, I. Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep. 1997, 16, 632–636, doi:10.1007/BF01275505.
[215]  Kim, J.H.; Shin, J.H.; Lee, H.J.; Chung, I.S.; Lee, H.J. Effect of chitosan on indirubin production from suspension culture of Polygonum tinctorium. J. Ferment. Bioeng. 1997, 83, 206–208, doi:10.1016/S0922-338X(97)83585-4.
[216]  Tay, L.F.; Khoh, L.K.; Loh, C.S.; Khor, E. Alginate-chitosan coacervation in production of artificial seeds. Biotechnol. Bioeng. 1993, 42, 449–454, doi:10.1002/bit.260420407.
[217]  Kowalski, B.; Jimenez Terry, F.; Herrera, L.; Agramonte Pe?alver, D. Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res. 2006, 49, 167–176.
[218]  El Ghaouth, A.; Smilanick, J.L.; Wilson, C.L. Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol. Technol. 2000, 19, 103–110, doi:10.1016/S0925-5214(00)00076-4.
[219]  Benhamou, N. Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: A comparison with the effect of chitosan. Phytopathology 2004, 94, 693–705, doi:10.1094/PHYTO.2004.94.7.693.
[220]  Du, J.; Gemma, H.; Iwahori, S. Effects of chitosan coating on the storage of peach Japanese pear and kiwifruit. J. Jpn. Soc. Hort. Sci. 1997, 66, 15–22, doi:10.2503/jjshs.66.15.
[221]  Fornes, F.; Almela, V.; Abad, M.; Agustí, M. Low concentrations of chitosan coating reduce water spot incidence and delay peel pigmentation of clementine mandarin fruit. J. Sci. Food Agric. 2005, 85, 1105–1112, doi:10.1002/jsfa.2071.
[222]  El Ghaouth, A.; Arul, J.; Grenier, J.; Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 1992, 82, 398–402, doi:10.1094/Phyto-82-398.
[223]  Romanazzi, G.; Nigro, F.; Ippolito, A. Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biol. Technol. 2003, 29, 73–80, doi:10.1016/S0925-5214(02)00239-9.
[224]  Romanazzi, G.; Mlikota Gabler, F.; Smilanick, J.L. Preharvest chitosan and postharvest UV-C irradiation treatments suppress gray mold of table grapes. Plant Dis. 2006, 90, 445–450, doi:10.1094/PD-90-0445.
[225]  Sivakumar, D.; Sultanbawa, Y.; Ranasingh, N.; Wijesundera, R.L.C. Effect of the combined application of chitosan and carbonate salts on the incidence of anthracnose and on the quality of papaya during storage. J. Hortic. Sci. Biotechnol. 2005, 80, 447–452.
[226]  Azian, E.; Zaki, A.R.M.; Mohamed, M.T.M.; Kamuruzaman, S. The use of chitosan on vase life of cut chrysanthemum (Dendranthema morifolium Ramat). In Proceedings of APEC Symposium on Quality Management in Postharvest System, Bangkok, Thailand, 3–5 August 2004; p. 403.
[227]  Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230.
[228]  Lonsdale, D. Available treatments for tree wounds: an assessment of their value. Arboricultural J. 1984, 8, 99–107, doi:10.1080/03071375.1984.9746664.
[229]  Badawy, M.E.I.; Rabea, E.I.; Rogge, T.M.; Stevens, C.V.; Steurbaut, W.; H?fte, M.; Smagghe, G. Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym. Bull. 2005, 54, 279–289, doi:10.1007/s00289-005-0396-z.
[230]  Rodríguez-Nú?ez, J.R.; López-Cervantes, J.; Sánchez-Machado, D.I.; Ramírez-Wong, B.; Torres-Chavez, P.; Cortez-Rocha, M.O. Antimicrobial activity of chitosan-based films against Salmonella typhimurium and Staphylococcus aureus. Int. J. Food Sci. Technol. 2012, 47, 2127–2133, doi:10.1111/j.1365-2621.2012.03079.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413