全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

DOI: 10.3390/agronomy3040794

Keywords: bait plants, biological control agents (BCAs), stress protecting agents (SPAs), screening, abiotic stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA) was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

References

[1]  Shaw, M.W. Preparing for changes in plant disease due to climate change. Plant Prot. Sci. 2009, 45, S3–S10.
[2]  Newton, A.C.; Johnson, S.N.; Gregory, P.J. Implications of climate change for diseases, crop yields and food security. Euphytica 2011, 179, 3–18, doi:10.1007/s10681-011-0359-4.
[3]  Maheswari, M.; Yadav, S.K.; Shanker, A.K.; Kumar, M.A.; Venkateswarlu, B. Overview of Plant Stresses: Mechanisms, Adaptations and Research Pursuit. In Crop Stress and its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: New York, NY, USA, 2012; pp. 1–18.
[4]  Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486, doi:10.1016/j.tplants.2012.04.001.
[5]  Alavi, P.; Starcher, M.R.; Zachow, C.; Müller, H.; Berg, G. Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front. Plant Sci. 2013, 4, 141, doi:10.3389/fpls.2013.00141.
[6]  Berg, G.; Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 2009, 68, 1–13, doi:10.1111/j.1574-6941.2009.00654.x.
[7]  K?berl, M.; Müller, H.; Ramadan, E.M.; Berg, G. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 2011, 6, e24452.
[8]  K?berl, M.; Ramadan, E.M.; Ro?mann, B.; Staver, C.; Fürnkranz, M.; Lukesch, B.; Grube, M.; Berg, G. Using Ecological Knowledge and Molecular Tools to Develop Effective and Safe Biocontrol Strategies. In Pesticides in the Modern World—Pests Control and Pesticides Exposure and Toxicity Assessment; Stoytcheva, M., Ed.; InTech e-book: Rijeka, Croatia, 2011; pp. 3–26.
[9]  Yang, J.; Kloepper, J.W.; Ryu, C.M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 2009, 14, 1–4, doi:10.1016/j.tplants.2008.10.004.
[10]  Opelt, K.; Chobot, V.; Hadacek, F.; Sch?nmann, S.; Eberl, L.; Berg, G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiol. 2007, 91, 2795–2809.
[11]  Opelt, K.; Berg, C.; Berg, G. The bryophyte genus Sphagnum is a reservoir for powerful and extraordinary antagonists and potentially facultative human pathogens. FEMS Microbiol. Ecol. 2007, 61, 38–53, doi:10.1111/j.1574-6941.2007.00323.x.
[12]  Grube, M.; Cardinale, M.; de Castro, J.V., Jr.; Müller, H.; Berg, G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009, 3, 1105–1115, doi:10.1038/ismej.2009.63.
[13]  Berg, G.; Hartenberger, K.; Liebminger, S.; Zachow, C. Antagonistic Endophytes from Mistletoes as Bio-resource to Control Plant as well as Clean Room Pathogens. In IOBC/WPRS Bulletin, Working Group “Biological Control of Fungal and Bacterial Plant Pathogens”; Pertot, I., Elad, Y., Gessler, C., Cini, A., Eds.; International Organisation for Biological Control (IOBC): Zurich, Switzerland, 2012; Volume 78, pp. 29–32.
[14]  Zachow, C.; Grosch, R.; Berg, G. Impact of biotic and a-biotic parameters on structure and function of microbial communities living on sclerotia of the soil-borne pathogenic fungus Rhizoctonia solani. Appl. Soil Ecol. 2011, 48, 193–200.
[15]  Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169.
[16]  Schwieger, F.; Tebbe, C.C. A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 1998, 64, 4870–4876.
[17]  Smalla, K.; Oros-Sichler, M.; Milling, A.; Heuer, H.; Baumgarte, S.; Becker, R.; Neuber, G.; Kropf, S.; Ulrich, A.; Tebbe, C.C. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J. Microbiol. Methods 2007, 69, 470–479, doi:10.1016/j.mimet.2007.02.014.
[18]  Bragina, A.; Oberauner-Wappis, L.; Halwachs, B.; Thallinger, G.G.; Müller, H.; Berg, G. The Sphagnum microbiome support greatly ecosystem functioning in bog ecosystems under extreme conditions. 2013. submitted.
[19]  Grosch, R.; Dealtry, S.; Schreiter, S.; Berg, G.; Mendon?a-Hagler, L.; Smalla, K. Biocontrol of Rhizoctonia solani: Complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods. Plant Soil 2012, 361, 343–357, doi:10.1007/s11104-012-1239-y.
[20]  Hartmann, A.; Schmid, M.; van Tuinen, D.; Berg, G. Plant-driven selection of microbes. Plant Soil 2009, 321, 235–257, doi:10.1007/s11104-008-9814-y.
[21]  Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95, doi:10.1038/nature11336.
[22]  Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; del Rio, T.G.; et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, A488(7409), 86–90.
[23]  Hartmann, A.; Rothballer, M.; Schmid, M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 2008, 312, 7–14, doi:10.1007/s11104-007-9514-z.
[24]  Ehlers, R.U. Regulation of Biological Control Agents; Springer: Dordrecht, The Netherlands, 2011.
[25]  Zachow, C.; Pirker, H.; Westendorf, C.; Tilcher, R.; Berg, G. The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents. Eur. J. Plant Pathol. 2009, 125, 367–376.
[26]  Loper, J.E.; Hassan, K.A.; Mavrodi, D.V.; Davis, E.W., II; Lim, C.K.; Shaffer, B.T.; Elbourne, L.D.H.; Stockwell, V.O.; Hartney, S.L.; Breakwell, K.; et al. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012, 8, e1002784, doi:10.1371/journal.pgen.1002784.
[27]  Zachow, C.; Tilcher, R.; Berg, G. Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microbial Ecol. 2008, 55, 119–129, doi:10.1007/s00248-007-9257-7.
[28]  Yeager, C.M.; Kornosky, L.; Housman, C.; Grote, E.E.; Belnap, J.; Kuske, C.R. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl. Environ. Microbiol. 2004, 70, 973–983, doi:10.1128/AEM.70.2.973-983.2004.
[29]  Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 1997, 63, 881–887.
[30]  De Souza, J.T.; Raaijmakers, J.M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 2003, 43, 21–34.
[31]  Martin, B.; Humbert, O.; Camara, M.; Guenzi, E.; Walker, J.; Mitchell, T.; Andrew, P.; Prudhomme, M.; Alloing, G.; Hakenbeck, R.; Morrison, D.A.; Boulnois, G.J.; Claverys, J.P. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumonia. Nucleic Acids Res. 1992, 20, 3479–3483, doi:10.1093/nar/20.13.3479.
[32]  Berg, G.; Roskot, N.; Steidle, A.; Eberl, L.; Zock, A.; Smalla, K. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 2002, 68, 3328–3338, doi:10.1128/AEM.68.7.3328-3338.2002.
[33]  Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739, doi:10.1093/molbev/msr121.
[34]  Prasetyo, E.N.; Kudanga, T.; Steiner, W.; Murkovic, M.; Wonisch, W.; Nyanhongo, G.S.; Gübitz, G.M. Cellular and plasma antioxidant activity assay using tetramethoxy azobismethylene quinone. Free Radic. Biol. Med. 2010, 49, 1205–1211, doi:10.1016/j.freeradbiomed.2010.07.003.
[35]  De Bruijn, I.; de Kock, M.J.D.; Yang, M.; de Waard, P.; van Beek, T.A.; Raaijmakers, J.M. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 2007, 63, 417–428, doi:10.1111/j.1365-2958.2006.05525.x.
[36]  Jain, D.K.; Lee, H.; Trevors, J.T. Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil. J. Ind. Microbiol. 1992, 10, 87–93, doi:10.1007/BF01583840.
[37]  Fürnkranz, M.; Müller, H.; Berg, G. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Prot. 2009, 116, 149–155.
[38]  Sawar, M.; Kremer, R.J. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 1995, 20, 282–285, doi:10.1111/j.1472-765X.1995.tb00446.x.
[39]  Kropf, S.; Heuer, H.; Grüning, M.; Smalla, K. Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J. Microbiol. Methods 2004, 57, 187–195, doi:10.1016/j.mimet.2004.01.002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413