全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Rhodococcus erythropolis and Its γ-Lactone Catabolic Pathway: An Unusual Biocontrol System That Disrupts Pathogen Quorum Sensing Communication

DOI: 10.3390/agronomy3040816

Keywords: Rhodococcus, biological control, soft-rot, quorum sensing, quorum quenching, lactonase

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rhodococcus erythropolis is an environmental Gram-positive Actinobacterium with a versatile metabolism involved in various bioconversions and degradations. Rhodococci are best known for their great potential in numerous decontamination and industrial processes. However, they can also prevent plant disease by disrupting quorum sensing-based communication of Gram-negative soft-rot bacteria, by degrading N-acyl-homoserine lactone signaling molecules. Such biocontrol activity results partly from the action of the γ-lactone catabolic pathway. This pathway is responsible for cleaving the lactone bond of a wide range of compounds comprising a γ-butyrolactone ring coupled to an alkyl or acyl chain. The aliphatic products of this hydrolysis are then activated and enter fatty acid metabolism. This short pathway is controlled by the presence of the γ-lactone, presumably sensed by a TetR-like transcriptional regulator, rather than the presence of the pathogen or the plant-host in the environment of the Rhodococci. Both the density and biocontrol activity of R. erythropolis may be boosted in crop systems. Treatment with a cheap γ-lactone stimulator, for example, the food flavoring γ-caprolactone, induces the activity in the biocontrol agent, R. erythropolis, of the pathway degrading signaling molecules; such treatments thus promote plant protection.

References

[1]  Von Bodman, S.B.; Bauer, W.D.; Coplin, D.L. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2003, 41, 455–482, doi:10.1146/annurev.phyto.41.052002.095652.
[2]  Cha, C.; Gao, P.; Chen, Y.C.; Shaw, P.; Farrand, S.K. Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 1998, 11, 1119–1129, doi:10.1094/MPMI.1998.11.11.1119.
[3]  Dong, Y.H.; Wang, L.H.; Xu, J.L.; Zhang, H.B.; Zhang, X.F. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 2001, 411, 813–817, doi:10.1038/35081101.
[4]  Fray, R.G.; Throup, J.P.; Daykin, M.; Wallace, A.; Williams, P.; Stewart, G.S.; Grierson, D. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat. Biotechnol. 1999, 17, 1017–1120, doi:10.1038/13717.
[5]  Ma?, A.; Montesano, M.; Koiv, V.; Palva, E.T. Transgenic plants producing the bacterial pheromone N-acylhomoserine lactone exhibit enhanced resistance to the bacterial phyto-pathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 2001, 14, 1035–1042, doi:10.1094/MPMI.2001.14.9.1035.
[6]  Barnard, A.M.; Salmond, G.P. Quorum sensing in Erwinia species. Anal. Bioanal. Chem. 2007, 387, 415–423, doi:10.1007/s00216-006-0701-1.
[7]  Charkowsky, A.O. The Soft Rot Erwinia. In Plant-Associated Bacteria; Gnanamanickam, S., Ed.; Springer: Dordrecht, the Netherlands, 2006; pp. 423–505.
[8]  Charkowski, A.; Blanco, C.; Condemine, G.; Expert, D.; Franza, T.; Hayes, C.; Hugouvieux-Cotte-Pattat, N.; López Solanilla, E.; Low, D.; Moleleki, L.; Pirhonen, M.; Pitman, A.; Perna, N.; Reverchon, S.; Rodríguez Palenzuela, P.; San Francisco, M.; Toth, I.; Tsuyumu, S.; van der Waals, J.; van der Wolf, J.; Van Gijsegem, F.; Yang, C.H.; Yedidia, I. The role of secretion systems and small molecules in soft-rot enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 2012, 50, 425–449, doi:10.1146/annurev-phyto-081211-173013.
[9]  Crépin, A.; Barbey, C.; Cirou, A.; Tannières, M.; Orange, N.; Feuilloley, M.; Dessaux, Y.; Burini, J.F.; Faure, D.; Latour, X. Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant Soil 2012, 358, 27–37, doi:10.1007/s11104-011-1030-5.
[10]  Czajkowski, R.; Jafra, S. Quenching of acyl-homoserine lactone-dependent quorum-sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 2009, 56, 1–16.
[11]  Czajkowski, R.; Pérombelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013, doi:10.1111/j.1365-3059.2011.02470.x.
[12]  P?llumaa, L.; Alam?e, T.; M?e, A. Quorum sensing and expression of virulence in pectobacteria. Sensors 2012, 12, 3327–3349, doi:10.3390/s120303327.
[13]  Smadja, B.; Latour, X.; Faure, D.; Chevalier, S.; Dessaux, Y.; Orange, N. Involvement of N-acylhomoserine lactones throughout the plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol. Plant-Microbe Interact. 2004, 17, 1269–1278, doi:10.1094/MPMI.2004.17.11.1269.
[14]  Jafra, S.; Jalink, H.; van der Schoor, R.; van der Wolf, J.M. Pectobacterium carotovorum subsp. carotovorum strains show diversity in production of response to N-acyl homoserine lactones. J. Phytopathol. 2006, 154, 729–739, doi:10.1111/j.1439-0434.2006.01185.x.
[15]  Molina, L.; Constantinescu, F.; Michel, L.; Reimmann, C.; Duffy, B.; Défago, G. Degradation of pathogen quorum-sensing molecules by soil bacteria: A preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 2003, 45, 71–81, doi:10.1016/S0168-6496(03)00125-9.
[16]  Uroz, S.; D’Angelo-Picard, C.; Carlier, A.; Elasri, M.; Sicot, C.; Petit, A.; Oger, P.; Faure, D.; Dessaux, Y. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 2003, 149, 1981–1989, doi:10.1099/mic.0.26375-0.
[17]  Crépin, A.; Beury-Cirou, A.; Barbey, C.; Farmer, C.; Helias, V.; Burini, J.F.; Faure, D.; Latour, X. N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: Diversity, abundance, and involvement in virulence. Sensors 2012, 12, 3484–3497.
[18]  Cirou, A.; Diallo, S.; Kurt, C.; Latour, X.; Faure, D. Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ. Microbiol. 2007, 9, 1511–1522, doi:10.1111/j.1462-2920.2007.01270.x.
[19]  D'Angelo-Picard, C.; Faure, D.; Penot, I.; Dessaux, Y. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ. Microbiol. 2005, 7, 1796–808.
[20]  Jafra, S.; Przysowa, J.; Czajkowski, R.; Michta, A.; Garbeva, P.; van der Wolf, J.M. Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can. J. Microbiol. 2006, 52, 1006–1015, doi:10.1139/w06-062.
[21]  Ma, A.; Lv, D.; Zhuang, X.; Zhuang, G. Quorum quenching in culturable phyllosphere bacteria from tobacco. Int. J. Mol. Sci. 2013, 14, 14607–14619, doi:10.3390/ijms140714607.
[22]  Bell, K.S.; Philp, J.C.; Aw, D.W.; Christofi, N. The genus Rhodococcus. J. Appl. Microbiol. 1998, 85, 195–210.
[23]  de Carvalho, C.C.; da Fonseca, M.M. The remarkable Rhodococcus erythropolis. Appl. Microbiol. Biotechnol. 2005, 67, 715–726, doi:10.1007/s00253-005-1932-3.
[24]  Ruberto, L.A.M.; Vasquez, S.; Lobalbo, A.; Mac Cormack, W.P. Psychrotolerant hydrocarbon-degrading Rhodococcus strains isolated from polluted Antarctic soils. Antarct. Sci. 2005, 17, 47–56, doi:10.1017/S0954102005002415.
[25]  Chang, W.N.; Liu, C.W.; Liu, H.S. Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis RID B-4865-2009. Process. Biochem. 2009, 44, 955–962, doi:10.1016/j.procbio.2009.04.014.
[26]  Schreiberová, O.; Hedbávná, P.; Cejková, A.; Jirk?, V.; Masák, J. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. N. Biotechnol. 2012, 30, 62–68, doi:10.1016/j.nbt.2012.04.005.
[27]  Larkin, M.J.; Kulakov, L.A.; Allen, C.C.R. Biodegradation and Rhodococcus—Masters of catabolic versatility. Curr. Opin. Microbiol. 2005, 16, 282–290.
[28]  Larkin, M.J.; Kulakov, L.A.; Allen, C.C. Biodegradation by members of the genus Rhodococcus: Biochemistry, physiology, and genetic adaptation. Adv. Appl. Microbiol. 2006, 59, 1–29.
[29]  Martinkova, L.; Uhnakova, B.; Patek, M.; Nesvera, J.; Kren, V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009, 35, 162–177.
[30]  van der Geize, R.; Dijkhuizen, L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr. Opin. Microbiol. 2004, 7, 255–261, doi:10.1016/j.mib.2004.04.001.
[31]  Warhurst, A.M.; Fewson, C.A. Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 1994, 14, 29–73, doi:10.3109/07388559409079833.
[32]  Ciapina, E.M.; Melo, W.C.; Santa Anna, L.M.; Santos, A.S.; Freire, D.M.; Pereira, N., Jr. Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source. Appl. Biochem. Biotechnol. 2006, 129–132, 880–886.
[33]  Pacheco, G.J.; Ciapina, E.M.; Gomes Ede, B.; Junior, N.P. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz. J. Microbiol. 2010, 41, 685–693, doi:10.1590/S1517-83822010000300019.
[34]  Pirog, T.; Sofilkanych, A.; Shevchuk, T.; Shulyakova, M. Biosurfactants of Rhodococcus erythropolis IMV Ас-5017: Synthesis intensification and practical application. Appl. Biochem. Biotechnol. 2013, 170, 880–894.
[35]  Qi, Y.; Zhao, L.; Olusheyi, O.Z.; Tan, X. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J. Environ. Sci. 2007, 19, 332–337. (in Chinese), doi:10.1016/S1001-0742(07)60054-0.
[36]  Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Inniss, W.E.; Greer, C.W. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 1998, 64, 2578–2584.
[37]  Whyte, L.G.; Slagman, S.J.; Pietrantonio, F.; Bourbonniere, L.; Koval, S.F.; Lawrence, J.R.; Inniss, W.E.; Greer, C.W. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol. 1999, 65, 2961–2968.
[38]  Yakimov, M.M.; Giuliano, L.; Bruni, V.; Scarfì, S.; Golyshin, P.N. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 1999, 22, 249–256.
[39]  de Carvalho, C.C.; Fatal, V.; Alves, S.S.; da Fonseca, M.M. Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl. Microbiol. Biotechnol. 2007, 76, 1423–1430, doi:10.1007/s00253-007-1103-9.
[40]  de Carvalho, C.C. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res. Microbiol. 2012, 163, 125–136, doi:10.1016/j.resmic.2011.11.003.
[41]  De Schrijver, A.; De Mot, R. Degradation of pesticides by actinomycetes. Crit. Rev. Microbiol. 1999, 25, 85–119, doi:10.1080/10408419991299194.
[42]  Huang, L.; Ma, T.; Li, D.; Liang, F.L.; Liu, R.L.; Li, G.Q. Optimization of nutrient component for diesel oil degradation by Rhodococcus erythropolis. Mar. Pollut. Bull. 2008, 56, 1714–1718.
[43]  Yu, B.; Xu, P.; Shi, Q.; Ma, C. Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl. Environ. Microbiol. 2006, 72, 54–58, doi:10.1128/AEM.72.1.54-58.2006.
[44]  Fanget, N.V.; Foley, S. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: A physiological and genetic analysis. Arch. Microbiol. 2011, 193, 1–13, doi:10.1007/s00203-010-0638-9.
[45]  Christofi, N.; Ivshina, I.B. Microbial surfactants and their use in field studies of soil remediation. J. Appl. Microbiol. 2002, 93, 915–929, doi:10.1046/j.1365-2672.2002.01774.x.
[46]  de Carvalho, C.C.; da Fonseca, M.M. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 2005, 51, 389–399, doi:10.1016/j.femsec.2004.09.010.
[47]  Leigh, M.B.; Prouzová, P.; Macková, M.; Macek, T.; Nagle, D.P.; Fletcher, J.S. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl. Environ. Microbiol. 2006, 72, 2331–2342, doi:10.1128/AEM.72.4.2331-2342.2006.
[48]  Leilei, Z.; Mingxin, H.; Suiyi, Z. Enzymatic remediation of the polluted crude oil by Rhodococcus. Afr. J. Microbiol. Res. 2012, 6, 1540–1547.
[49]  Lofgren, J.; Haddad, S.; Kendall, K. Emerging Technologies in Hazardous Waste Management; Tedder, W., Pohland, F.G., Eds.; ACS Symposium Series; ACS Publication: Columbus, OH, USA, 1995; Volume 607, pp. 252–263.
[50]  Rappert, S.; Li, R.; Kokova, M.; Antholz, M.; Nagorny, S.; Francke, W.; Müller, R. Degradation of 2,5-dimethylpyrazine by Rhodococcus erythropolis strain DP-45 isolated from a waste gas treatment plant of a fishmeal processing company. Biodegradation 2007, 18, 585–596, doi:10.1007/s10532-006-9091-5.
[51]  Solyanikova, I.; Golovleva, L. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Mikrobiologiia 2011, 80, 579–594.
[52]  Diallo, S.; Crepin, A.; Barbey, C.; Orange, N.; Burini, J.F.; Latour, X. Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol. Ecol. 2011, 75, 351–364, doi:10.1111/j.1574-6941.2010.01023.x.
[53]  Food and Agriculture Organization (FAO). International Year of the Potato 2008, New Light on A Hidden Treasure; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009; p. 144.
[54]  Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror (Lahkim), L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011, 60, 385–399, doi:10.1111/j.1365-3059.2011.02427.x.
[55]  Crépin, A.; Barbey, C.; Beury-Cirou, A.; Helias, V.; Taupin, L.; Reverchon, S.; Nasser, W.; Faure, D.; Dufour, A.; Orange, N.; Feuilloley, M.; Heurlier, K.; Burini, J.F.; Latour, X. Quorum sensing signaling molecules produced by reference and emerging soft-rot bacteria (Dickeya and Pectobacterium spp.). PLoS One 2012, 7, e35176, doi:10.1371/journal.pone.0035176.
[56]  Smadja, B.; Latour, X.; Trigui, S.; Burini, J-F.; Chevalier, S.; Orange, N. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.). Can. J. Microbiol. 2004, 50, 19–27, doi:10.1139/w03-099.
[57]  Liu, H.; Coulthurst, S.J.; Pritchard, L.; Hedley, P.E.; Ravensdale, M.; Humphris, S.; Burr, T.; Takle, G.; Brurberg, M.B.; Birch, P.R.; Salmond, G.P.; Toth, I.K. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 2008, 4, e1000093, doi:10.1371/journal.ppat.1000093.
[58]  Monson, R.; Burr, T.; Liu, H.; Hedley, P.; Toth, I.; Salmond, G.P. Identification of genes in the VirR regulon of Pectobacterium atrosepticum and characterization of their roles in quorum sensing-dependent virulence. Environ. Microbiol. 2012, 15, 687–701.
[59]  Latour, X.; Diallo, S.; Chevalier, S.; Morin, D.; Smadja, B.; Burini, J.F.; Haras, D.; Orange, N. Thermoregulation of N-acyl homoserine lactones-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum. Appl. Environ. Microbiol. 2007, 73, 4078–4081, doi:10.1128/AEM.02681-06.
[60]  Park, S.Y.; Hwang, B.J.; Shin, M.H.; Kim, J.A.; Kim, H.K.; Lee, J.K. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol. Lett. 2006, 261, 102–108, doi:10.1111/j.1574-6968.2006.00336.x.
[61]  Uroz, S.; Chhabra, S.R.; Camara, M.; Williams, P.; Oger, P.; Dessaux, Y. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 2005, 151, 3313–3322, doi:10.1099/mic.0.27961-0.
[62]  Uroz, S.; Oger, P.M.; Chapelle, E.; Adeline, M.T.; Faure, D.; Dessaux, Y. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 2008, 74, 1357–1366, doi:10.1128/AEM.02014-07.
[63]  Barbey, C.; Crépin, A.; Bergeau, D.; Ouchiha, A.; Mijouin, L.; Taupin, L.; Orange, N.; Feuilloley, M.; Dufour, A.; Burini, J.F.; Latour, X. In planta biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway. PLoS One 2013, 8, e66642, doi:10.1371/journal.pone.0066642.
[64]  Barbey, C.; Crépin, A.; Cirou, A.; Budin-Verneuil, A.; Orange, N.; Feuilloley, M.; Faure, D.; Dessaux, Y.; Burini, J.F.; Latour, X. Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J. Proteome Res. 2012, 11, 206–216, doi:10.1021/pr200936q.
[65]  Afriat, L.; Roodveldt, C.; Manco, G.; Tawfik, D.S. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 2006, 45, 13677–13686, doi:10.1021/bi061268r.
[66]  Curragh, H.; Flynn, O.; Larkin, M.J.; Stafford, T.M.; Hamilton, J.T.; Harper, D.B. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064. Microbiology 1994, 140, 1433–1442, doi:10.1099/00221287-140-6-1433.
[67]  Singh, B.K. Organophosphorus-degrading bacteria: Ecology and industrial applications. Nat. Rev. Microbiol. 2009, 7, 156–164, doi:10.1038/nrmicro2050.
[68]  Sekine, M.; Tanikawa, S.; Omata, S.; Saito, M.; Fujisawa, T.; Tsukatani, N.; Tajima, T.; Sekigawa, T.; Kosugi, H.; Matsuo, Y.; et al. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ. Microbiol. 2006, 8, 334–346, doi:10.1111/j.1462-2920.2005.00899.x.
[69]  Ramos, J.L.; Martinez-Bueno, M.; Molina-Henares, A.J.; Teran, W.; Watanabe, K.; Zhang, X.; Gallegos, M.T.; Brennan, R.; Tobes, R. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 2005, 69, 326–356.
[70]  Cuthbertson, L.; Nodwell, J.R. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 2013, 77, 440–475, doi:10.1128/MMBR.00018-13.
[71]  Si, D.; Urano, N.; Shimizu, S.; Kataoka, M. LplR, a repressor belonging to the TetR family, regulates expression of the L-pantoyl lactone dehydrogenase gene in Rhodococcus erythropolis. Appl. Environ. Microbiol. 2012, 78, 7923–7930, doi:10.1128/AEM.01583-12.
[72]  Cha, C.J.; Cain, R.B.; Bruce, N.C. The modified beta-ketoadipate pathway in Rhodococcus rhodochrous N75: Enzymology of 3-methylmuconolactone metabolism. J. Bacteriol. 1998, 180, 6668–6673.
[73]  Alvarez, H.M. Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Intern. Biodeterior. Biodegrad. 2003, 52, 35–42, doi:10.1016/S0964-8305(02)00120-8.
[74]  Van der Vlugt-Bergmans, C.J.; van der Werf, M.J. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14. Appl. Environ. Microbiol. 2001, 67, 733–741, doi:10.1128/AEM.67.2.733-741.2001.
[75]  Kaufmann, G.F.; Sartorio, R.; Lee, S.H.; Rogers, C.J.; Meijler, M.M.; Moss, J.A.; Clapham, B.; Brogan, A.P.; Dickerson, T.J.; Janda, K.D. Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl. Acad. Sci. USA. 2005, 102, 309–314, doi:10.1073/pnas.0408639102.
[76]  Roche, D.M.; Byers, J.T.; Smith, D.S.; Glansdorp, F.G.; Spring, D.R.; Welch, M. Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 2004, 150, 2023–2028, doi:10.1099/mic.0.26977-0.
[77]  Reading, N.C.; Sperandio, V. Quorum sensing: the many language of bacteria. FEMS Microbiol. Lett. 2006, 254, 1–11, doi:10.1111/j.1574-6968.2005.00001.x.
[78]  Takano, E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006, 9, 287–294, doi:10.1016/j.mib.2006.04.003.
[79]  Nishida, H.; Ohnishi, Y.; Beppu, T.; Horinouchi, S. Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ. Microbiol. 2007, 9, 1986–1994, doi:10.1111/j.1462-2920.2007.01314.x.
[80]  Carlier, A.; Uroz, S.; Smadja, B.; Fray, R.; Latour, X.; Dessaux, Y.; Faure, D. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl. Environ. Microbiol. 2003, 69, 4989–4993, doi:10.1128/AEM.69.8.4989-4993.2003.
[81]  Dong, Y.H.; Zhang, L.H. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 2005, 43, 101–109.
[82]  Barbey, C.; Kwasiborski, A.; Burini, J-F.; Faure, D.; Latour, X. Identification of a wide range of catabolic enzymes involved in the assimilation of various N-acyl homoserine lactones by Rhodococcus erythropolis. 2013. unpublished.
[83]  Reimmann, C.; Ginet, N.; Michel, L.; Keel, C.; Michaux, P.; Krishnapillai, V.; Zala, M.; Heurlier, K.; Triandafillu, K.; Harms, H.; Défago, G.; Haas, D. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 2002, 148, 923–932.
[84]  Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Appl. Environ. Microbiol. 2008, 74, 1357–1366, doi:10.1128/AEM.02014-07.
[85]  Cirou, A.; Raffoux, A.; Diallo, S.; Latour, X.; Dessaux, Y.; Faure, D. Gamma-caprolactone stimulates the growth of quorum-quenching Rhodococcus populations in a large-scale hydroponic system for culturing Solanum tuberosum. Res. Microbiol. 2011, 162, 945–950, doi:10.1016/j.resmic.2011.01.010.
[86]  Maga, J.A. Lactones in foods. CRC Crit. Rev. Food Sci. Nutr. 1976, 8, 1–56.
[87]  Murib, J.H.; Kahn, J.H. Process for Preparing Gamma-Caprolactone by Isomerization of Epsilon-Caprolactone. U.S. Patent 4,611,069, 9 September 1986.
[88]  Nu?ez, M.T.; Martin, V.S. Efficient oxidation of phenyl group to carboxylic acids with ruthenium tetraoxide. A simple synthesis of (R)-γ-caprolactone, the pheromone of Trogoderma granarium. J. Org. Chem. 1990, 55, 1928–1932, doi:10.1021/jo00293a044.
[89]  Cirou, A.; Mondy, S.; An, S.; Charrier, A.; Sarrazin, A.; Thoison, O.; DuBow, M.; Faure, D. Efficient biostimulation of the native and introduced quorum-quenching Rhodococcus erythropolis is revealed by a combination of analytical chemistry, microbiology and pyrosequencing. Appl. Environ. Microbiol. 2012, 78, 481–492, doi:10.1128/AEM.06159-11.
[90]  Latour, X.; Faure, D.; Diallo, S.; Cirou, A.; Smadja, B.; Dessaux, Y.; Orange, N. Control of bacterial diseases of potato caused by Pectobacterium spp. (Erwinia carotovora). Cah. Agric. 2008, 17, 355–359.
[91]  Van Peer, R.; Schippers, B. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Revue canadienne de microbiologie 1989, 35, 456–463, doi:10.1139/m89-070.
[92]  Cirou, A.; Uroz, S.; Chapelle, E.; Latour, X.; Orange, N.; Faure, D.; Dessaux, Y. Quorum sensing as a target for novel biocontrol strategies. In Plant Pathology in the 21st Century; Gisi, U., Chet, I., Gullino, M.L., Eds.; Springer: Berlin, Germany, 2009; pp. 121–132.
[93]  Vancov, T.; Jury, K.; Van Zwieten, L. Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21. J. Appl. Microbiol. 2005, 99, 767–775, doi:10.1111/j.1365-2672.2005.02679.x.
[94]  Vancov, T.; Jury, K.; Rice, N.; van Zwieten, L.; Morris, S. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. J. Appl. Microbiol. 2007, 102, 212–220, doi:10.1111/j.1365-2672.2006.03047.x.
[95]  Mobed-Miremadi, M.; Darbha, S. Immobilization of R. erythropolis in alginate-based artificial cells for simulated plaque degradation in aqueous media. J. Microencapsul. 2013, doi:10.3109/02652048.2013.814726.
[96]  Guo, X.L.; Deng, G.; Xu, J.; Wang, M.X. Immobilization of Rhodococcus sp. AJ270 in alginate capsules and its application in enantioselective biotransformation of trans-2-methyl-3-phenyl-oxiranecarbonitrile and amide. Enzyme Microb. Tech. 2006, 39, 1–5, doi:10.1016/j.enzmictec.2005.01.044.
[97]  G?rke, B.; Stülke, J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients. Nat. Rev. Microbiol. 2008, 6, 613–624, doi:10.1038/nrmicro1932.
[98]  Alabouvette, C.; Olivain, C.; Steinberg, C. Biological control of plant pathogens: The European situation. Eur. J. Plant Pathol. 2006, 114, 329–341, doi:10.1007/s10658-005-0233-0.
[99]  Fravel, D.R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359, doi:10.1146/annurev.phyto.43.032904.092924.
[100]  Montesinos, E. Development, registration and commercialization of microbial pesticides for plant protection. Int. Microbiol. 2003, 6, 245–252, doi:10.1007/s10123-003-0144-x.
[101]  Latour, X.; Delorme, S.; Mirleau, P.; Lemanceau, P. Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: Description of a strategy based on population and model strain studies. Agron. Sustain. Dev. 2003, 23, 397–405.
[102]  Mark, G.L.; Morrissey, J.P.; Higgins, P.; O’Gara, F. Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 2006, 56, 161–177.
[103]  Brazelton, J.N.; Pfeufer, E.E.; Sweat, T.A.; McSpadden-Gardener, B.B.; Coenen, C. 2,4-Diacetylphloroglucinol alters plant root development. Mol. Plant-Microbe Interact. 2008, 21, 1349–1358, doi:10.1094/MPMI-21-10-1349.
[104]  Schippers, B.; Bakker, A.W.; Bakker, P.A.H.M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 1987, 25, 339–358, doi:10.1146/annurev.py.25.090187.002011.
[105]  Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; Toth, I.; Salmond, G.; Foster, G.D. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629, doi:10.1111/j.1364-3703.2012.00804.x.
[106]  Flavier, A.B.; Ganova-Raeva, L.M.; Schell, M.A.; Denny, T.P. Hierarchical autoinduction in Ralstonia solanacearum: Control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J. Bacteriol. 1997, 179, 7089–7097.
[107]  Qui?ones, B.; Dulla, G.; Lindow, S.E. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol. Plant Microbe Interact. 2005, 18, 682–693, doi:10.1094/MPMI-18-0682.
[108]  Venturi, V.; Venuti, C.; Devescovi, G.; Lucchese, C.; Friscina, A.; Degrassi, G.; Aguilar, C.; Mazzucchi, U. The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiol. Lett. 2004, 241, 179–183, doi:10.1016/j.femsle.2004.10.015.
[109]  Becker, R.; Behrendt, U.; Hommel, B.; Kropf, S.; Ulrich, A. Effect of transgenic fructan producing potatoes on the community structure of rhizosphere and phyllosphere bacteria. FEMS Microbiol. Ecol. 2008, 66, 411–425, doi:10.1111/j.1574-6941.2008.00562.x.
[110]  Heuer, H.; Kroppenstedt, R.M.; Lottmann, J.; Berg, G.; Smalla, K. Effect of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microbiol. 2002, 68, 1325–1335, doi:10.1128/AEM.68.3.1325-1335.2002.
[111]  Lottmann, J.; Heuer, H.; Smalla, K.; Berg, G. Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol. Ecol. 1999, 29, 365–377, doi:10.1111/j.1574-6941.1999.tb00627.x.
[112]  Van Overbeek, L.; van Elsas, J.D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol. Ecol. 2008, 64, 283–296, doi:10.1111/j.1574-6941.2008.00469.x.
[113]  Zarkani, A.A.; Stein, E.; R?hrich, C.R.; Schikora, M.; Evguenieva-Hackenberg, E.; Degenkolb, T.; Vilcinskas, A.; Klug, G.; Kogel, K.H.; Schikora, A. Homoserine lactones influence the reaction of plants to rhizobia. Int. J. Mol. Sci. 2013, 14, 17122–17146, doi:10.3390/ijms140817122.
[114]  Bais, H.P. Shoot the messages not the messengers. Plant Soil 2012, 358, 7–10, doi:10.1007/s11104-011-1114-2.
[115]  Delalande, L.; Faure, D.; Raffoux, A.; Uroz, S.; D’Angelo-Picard, C.; Elasri, M.; Carlier, A.; Berruyer, R.; Petit, A.; Williams, P.; Dessaux, Y. N-hexanoyl-l-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol. Ecol. 2005, 52, 13–20, doi:10.1016/j.femsec.2004.10.005.
[116]  Keshavan, N.D.; Chowdhary, P.K.; Haines, D.C.; Gonzalez, J.E.L. Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 2005, 187, 8427–8436, doi:10.1128/JB.187.24.8427-8436.2005.
[117]  Teplitski, M.; Robinson, J.B.; Bauer, W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact. 2000, 13, 637–648, doi:10.1094/MPMI.2000.13.6.637.
[118]  G?tz, C.; Fekete, A.; Gebefuegi, I.; Forczek, S.T.; Fuksová, K.; Li, X.; Englmann, M.; Gryndler, M.; Hartmann, A.; Matucha, M.; Schmitt-Kopplin, P.; Schr?der, P. Uptake, degradation and chiral discrimination of N-acyl-d/l-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal. Bioanal. Chem. 2007, 389, 1447–1457, doi:10.1007/s00216-007-1579-2.
[119]  Schikora, A.; Schenk, S.T.; Stein, E.; Molitor, A.; Zuccaro, A.; Kogel, K.-H. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 2011, 157, 1407–1418, doi:10.1104/pp.111.180604.
[120]  Schuhegger, R.; Ihring, A.; Gantner, S.; Bahnweg, G.; Knappe, C.; Vogg, G.; Hutzler, P.; Schmid, M.; Van Breusegem, F.; Eberl, L.; Hartmann, A.; Langebartels, C. Induction of systemic resistance in tomato by N-acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 2006, 29, 909–918, doi:10.1111/j.1365-3040.2005.01471.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133