全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

DOI: 10.3390/agronomy3030508

Keywords: prairie plants, minirhizotron, roots, grazing, biofuels

Full-Text   Cite this paper   Add to My Lib

Abstract:

Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm 3) and diameters were 20% larger (0.29 vs. 0.24 mm) compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes ( i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths) were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

References

[1]  Jackson, R.; Canadell, J.; Ehleringer, J.; Mooney, H.; Sala, O.; Schulze, E. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411, doi:10.1007/BF00333714.
[2]  Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436, doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
[3]  Davis, S.C.; Anderson-Teixeira, K.J.; DeLucia, E.H. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci. 2009, 14, 140–146, doi:10.1016/j.tplants.2008.12.006.
[4]  Liebig, M.A.; Johnson, H.A.; Hanson, J.D.; Frank, A.B. Soil carbon under switchgrass stands and cultivated cropland. Biomass Bioenergy 2005, 28, 347–354, doi:10.1016/j.biombioe.2004.11.004.
[5]  Tracy, B.F.; Maughan, M.; Post, N.; Faulkner, D.B. Integrating annual and perennial warm-season grasses in a temperate grazing system. Crop Sci. 2010, 50, 2171–2177, doi:10.2135/cropsci2010.02.0110.
[6]  Reid, R.L.; Jung, G.A.; Allinson, D. Nutritive Quality of Warm Season Grasses in the Northeast; West Virginia University, Agricultural and Forestry Experiment Station: Morgantown, WV, USA, 1988.
[7]  Detling, J.K.; Dyer, M.I.; Winn, D.T. Net photosynthesis, root respiration, and regrowth of Bouteloua gracilis following simulated grazing. Oecologia 1979, 41, 127–134, doi:10.1007/BF00344997.
[8]  Crider, F.J. Root-Growth Stoppage Resulting from Defoliation of Grass; USDA: Washington, WA, USA, 1955.
[9]  Schuster, J.L. Root development of native plants under three grazing intensities. Ecology 1964, 45, 63–70, doi:10.2307/1937107.
[10]  Milchunas, D.G.; Lauenroth, W.K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol. Monogr. 1993, 63, 327–366, doi:10.2307/2937150.
[11]  McNaughton, S.; Banyikwa, F.; McNaughton, M. Root biomass and productivity in a grazing ecosystem: The Serengeti. Ecology 1998, 79, 587–592, doi:10.1890/0012-9658(1998)079[0587:RBAPIA]2.0.CO;2.
[12]  Frank, D.; Kuns, M.; Guido, D. Consumer control of grassland plant production. Ecology 2002, 83, 602–606, doi:10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2.
[13]  Dunn, J.H.; Engel, R.E. Effect of defoliation and root-pruning on early root growth from Merion Kentucky bluegrass sods and seedlings. Agron. J. 1971, 63, 659–663, doi:10.2134/agronj1971.00021962006300050001x.
[14]  Schuman, G.E.; Reeder, J.D.; Manley, J.T.; Hart, R.H.; Manley, W.A. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Appl. 1999, 9, 65–71, doi:10.1890/1051-0761(1999)009[0065:IOGMOT]2.0.CO;2.
[15]  Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 2012, 49, 1204–1215, doi:10.1111/j.1365-2664.2012.02205.x.
[16]  Kitchen, D.J.; Blair, J.M.; Callaham, M.A., Jr. Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant Soil 2009, 323, 235–247, doi:10.1007/s11104-009-9931-2.
[17]  Pucheta, E.; Bonamici, I.; Cabido, M.; Diaz, S. Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Austral Ecol. 2004, 29, 201–208, doi:10.1111/j.1442-9993.2004.01337.x.
[18]  Gill, R.; Burke, I.; Lauenroth, W.; Milchunas, D. Longevity and turnover of roots in the shortgrass steppe: Influence of diameter and depth. Plant Ecol. 2002, 159, 241–251, doi:10.1023/A:1015529507670.
[19]  Tjoelker, M.G.; Craine, J.M.; Wedin, D.; Reich, P.B.; Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 2005, 167, 493–508, doi:10.1111/j.1469-8137.2005.01428.x.
[20]  Soil Survey Staff, United States Department of Agriculture. Official soil series descriptions. Available online: http://soils.usda.gov/technical/classification/osd/index.html (accessed on 17 December 2012).
[21]  Johnson, M.G.; Tingey, D.T.; Phillips, D.L.; Storm, M.J. Advancing fine root research with minirhizotrons. Environ. Exp. Bot. 2001, 45, 263–289, doi:10.1016/S0098-8472(01)00077-6.
[22]  Jackson, R.B.; Mooney, H.A.; Schulze, E. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA 1997, 94, 7362–7366, doi:10.1073/pnas.94.14.7362.
[23]  Greenwood, K.L.; Hutchinson, K.J. Root characteristics of temperate pasture in New South Wales after grazing at three stocking rates for 30 years. Grass Forage Sci. 1998, 53, 120–128.
[24]  Oesterheld, M. Effect of defoliation intensity on aboveground and belowground relative growth rates. Oecologia 1992, 92, 313–316, doi:10.1007/BF00317456.
[25]  H?gh-Jensen, H.; Schjoerring, J.K. Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol. Biochem. 2001, 33, 439–448, doi:10.1016/S0038-0717(00)00183-8.
[26]  Weaver, J.E.; Darland, R.W. Soil-root relationships of certain native grasses in various soil types. Ecol. Monogr. 1949, 19, 303–338, doi:10.2307/1943273.
[27]  Frank, A.; Berdahl, J.; Hanson, J.; Liebig, M.; Johnson, H. Biomass and carbon partitioning in switchgrass. Crop Sci. 2004, 44, 1391–1396, doi:10.2135/cropsci2004.1391.
[28]  Skinner, R.H.; Comas, L.H. Root distribution of temperate forage species subjected to water and nitrogen stress. Crop Sci. 2010, 50, 2178–2185, doi:10.2135/cropsci2009.08.0461.
[29]  Mousel, E.M.; Schacht, W.H.; Zanner, C.W.; Moser, L.E. Effects of summer grazing strategies on organic reserves and root characteristics of big bluestem. Crop Sci. 2005, 45, 2008–2014, doi:10.2135/cropsci2004.0694.
[30]  Eissenstat, D.M. Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 1992, 15, 763–782, doi:10.1080/01904169209364361.
[31]  Picon-Cochard, C.; Pilon, R.; Tarroux, E.; Pagès, L.; Robertson, J.; Dawson, L. Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 2012, 353, 47–57, doi:10.1007/s11104-011-1007-4.
[32]  McNaughton, S. Compensatory plant growth as a response to herbivory. Oikos 1983, 40, 329–336, doi:10.2307/3544305.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413