全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

DOI: 10.3390/agronomy3030550

Keywords: soybean nodules, cysteine proteases, cystatins, nodule development, senescence, Glycine max

Full-Text   Cite this paper   Add to My Lib

Abstract:

Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria ( Rhizobia) facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin) system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

References

[1]  Lindemann, W.C.; Glover, C.R. Nitrogen Fixation by Legumes. Department of Agriculture Cooperating, New Mexico State University, 1990. 1990. Available online: http://www.csun.edu/~hcbio027/biotechnology/lec10/lindemann.html (accessed on 12 July 2013).
[2]  Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677, doi:10.1038/nature01014.
[3]  Alesandrini, F.; Frendo, P.; Puppo, A.; Hérouart, D. Isolation of a molecular marker of soybean nodule senescence. Plant Physiol. Biochem. 2003, 41, 727–732, doi:10.1016/S0981-9428(03)00110-4.
[4]  Puppo, A.; Groten, K.; Bastian, F.; Carzaniga, R.; Soussi, M.; Lucas, M.M.; de Felipe, M.R.; Harrison, J.; Vanacker, H.; Foyer, C.H. Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol. 2005, 165, 683–701.
[5]  Matamoros, M.A.; Baird, L.M.; Escuredo, P.R.; Dalton, D.A.; Minchin, F.R.; Iturbe-Ormaetxe, I.; Rubio, M.C.; Moran, J.F.; Gordon, A.J.; Becana, M. Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. Plant Physiol. 1999, 121, 97–112, doi:10.1104/pp.121.1.97.
[6]  Lim, P.O.; Woo, H.R.; Nam, H.G. Molecular genetics of leaf senescence in Arabidopsis. Trends Sci. 2003, 8, 272–278, doi:10.1016/S1360-1385(03)00103-1.
[7]  Martinez, D.E.; Bartoli, C.G.; Grbic, V.; Guiamet, J.J. Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J. Exp. Bot. 2007, 58, 1099–1107, doi:10.1093/jxb/erl270.
[8]  Kardailsky, I.V.; Brewin, N.J. Expression of cysteine protease genes in pea nodule development and senescence. Mol. Plant Microbe Inter. 1996, 9, 689–695, doi:10.1094/MPMI-9-0689.
[9]  Solomon, M.; Belenghi, B.; Delledonne, M.; Menachem, E.; Levine, A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 1999, 11, 431–443.
[10]  Estelle, M. Proteases and cellular regulation in plants. Curr. Opin. Plant Biol. 2001, 4, 254–260, doi:10.1016/S1369-5266(00)00169-2.
[11]  Benchabane, M.; Schlüter, U.; Vorster, J.; Goulet, M.C.; Michaud, D. Plant cystatins. Biochimie 2010, 92, 1657–1666, doi:10.1016/j.biochi.2010.06.006.
[12]  Oh, C.J.; Lee, H.; Kim, H.B.; An, C.S. Isolation and characterization of a root nodule-specific cysteine proteinase cDNA from soybean. J. Plant Biol. 2004, 47, 216–220, doi:10.1007/BF03030511.
[13]  Beers, E.P.; Woffenden, B.J.; Zhao, C. Plant proteolytic enzymes: Possible roles during programmed cell death. Plant Mol. Biol. 2000, 44, 399–415, doi:10.1023/A:1026556928624.
[14]  Esteban-García, B.; Garrido-Cárdenas, J.A.; Alonso, D.L.; García-Maroto, F. A distinct subfamily of papain-like cystein proteinases regulated by senescence and stresses in Glycine max. J. Plant Physiol. 2010, 167, 1101–1108, doi:10.1016/j.jplph.2010.03.012.
[15]  Lee, H.; Hur, C.G.; Oh, C.J.; Kim, H.B.; Pakr, S.Y.; An, C.S. Analysis of the root nodule-enhanced transcriptome in soybean. Mol. Cells 2004, 18, 53–62.
[16]  Asp, T.; Bowra, S.; Borg, S.; Holm, P.B. Molecular cloning, functional expression in Escherichia coli and enzymatic characterisation of a cysteine protease from white clover Trifolium repens. Biochim. Biophys. Acta Proteins & Proteomics 2004, 1699, 111–122.
[17]  Pfeiffer, N.E.; Torres, C.M.; Wagner, F.W. Proteolytic activity in soybean root nodules: Activity in host cell cytosol and bacteroids throughout physiological development and senescence. Plant Physiol. 1983, 71, 797, doi:10.1104/pp.71.4.797.
[18]  Pladys, D.; Vance, C.P. Proteolysis during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol. 1993, 103, 379–384.
[19]  Lohman, K.N.; Gan, S.; John, M.C.; Amasino, R.M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 1994, 92, 322–328, doi:10.1111/j.1399-3054.1994.tb05343.x.
[20]  Martinez, M.; Cambra, I.; González‐Melendi, P.; Santamaría, M.E.; Díaz, I. C1A cysteine-proteases and their inhibitors in plants. Physiol. Plant. 2012, 145, 85–94, doi:10.1111/j.1399-3054.2012.01569.x.
[21]  Martinez, M.; Diaz, I. The origin and evolution of plant cystatins and their target cysteine proteinases indicate a complex functional relationship. BMC Evol. Biol. 2008, 8, 198, doi:10.1186/1471-2148-8-198.
[22]  Wiederanders, B. Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim. Pol. 2003, 50, 691–713.
[23]  Müntz, K.; Shutov, A.D. Legumains and their functions in plants. Trends Plant Sci. 2002, 7, 340–344, doi:10.1016/S1360-1385(02)02298-7.
[24]  Hara-Nishimura, I.; Hatsugai, N.; Nakaune, S.; Kuroyanagi, M.; Nishimura, M. Vacuolar processing enzyme: An executor of plant cell death. Curr. Opin. Plant Biol. 2005, 8, 404–408, doi:10.1016/j.pbi.2005.05.016.
[25]  Roberts, I.N.; Caputo, C.; Criado, M.V.; Funk, C. Senescence-Associated proteases in plants. Physiol. Plant. 2012, 145, 130–139, doi:10.1111/j.1399-3054.2012.01574.x.
[26]  Sajid, M.; McKerrow, J.H.; Hansell, E.; Mathieu, M.A.; Lucas, K.D.; Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J.P.; Lim, K.C. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasit. 2003, 131, 65–75, doi:10.1016/S0166-6851(03)00194-4.
[27]  Li, Y.; Zhou, L.; Li, Y.; Chen, D.; Tan, X.; Lei, L.; Zhou, J. A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol. 2008, 180, 185–192, doi:10.1111/j.1469-8137.2008.02562.x.
[28]  Naito, Y.; Fujie, M.; Usami, S.; Murooka, Y.; Yamada, T. The involvement of a cysteine proteinase in the nodule development in Chinese milk vetch infected with Mesorhizobium huakuii subsp. rengei. Plant Physiol. 2000, 124, 1087–1096, doi:10.1104/pp.124.3.1087.
[29]  Lievens, S.; Goormachtig, S.; Holsters, M. Nodule-Enhanced protease inhibitor gene: Emerging patterns of gene expression in nodule development on Sesbania rostrata. J. Exp. Bot. 2004, 55, 89–97.
[30]  Vincent, J.L.; Brewin, N.J. Immunolocalization of a cysteine protease in vacuoles, vesicles, and symbiosomes of pea nodule cells. Plant Physiol. 2000, 123, 521–530, doi:10.1104/pp.123.2.521.
[31]  Sheokand, S.; Dahiya, P.; Vincent, J.; Brewin, N. Modified expression of cysteine protease affects seed germination, vegetative growth and nodule development in transgenic lines of Medicago truncatula. Plant Sci. 2005, 169, 966–975, doi:10.1016/j.plantsci.2005.07.003.
[32]  Martinez, M.; Cambra, I.; Carrillo, L.; Diaz-Mendoza, M.; Diaz, I. Characterization of the entire cystatin gene family in barley and their target cathepsin l-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol. 2009, 151, 1531–1545, doi:10.1104/pp.109.146019.
[33]  Tian, L.; Zhang, L.; Zhang, J.; Song, Y.; Guo, Y. Differential proteomic analysis of soluble extracellular proteins reveals the cysteine protease and cystatin involved in suspension-cultured cell proliferation in rice. Biochim. Biophys. Acta 2009, 1794, 459–467.
[34]  Grudkowska, M.; Zagdanska, B. Multifunctional role of plant cysteine proteinases. Acta Biochim. Pol. 2004, 51, 609–624.
[35]  Sugawara, H.; Shibuya, K.; Yoshioka, T.; Hashiba, T.; Satoh, S. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? J. Exp. Bot. 2002, 53, 407–413, doi:10.1093/jexbot/53.368.407.
[36]  Coupe, S.A.; Sinclair, B.K.; Watson, L.M.; Heyes, J.A.; Eason, J.R. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets. J. Exp. Bot. 2003, 54, 1045–1056, doi:10.1093/jxb/erg105.
[37]  Hong, J.K.; Hwang, J.E.; Lim, C.J.; Yang, K.; Jin, Z.L.; Kim, C.Y.; Koo, J.C.; Chung, W.S.; Lee, K.O.; Lee, S.Y. Over-expression of Chinese cabbage phytocystatin 1 retards seed germination in Arabidopsis. Plant Sci. 2007, 172, 556–563, doi:10.1016/j.plantsci.2006.11.005.
[38]  Michaud, D. Gel electrophoresis of proteolytic enzymes. Anal. Chim. Acta 1998, 372, 173–185, doi:10.1016/S0003-2670(98)00349-3.
[39]  Barrett, A.J.; Kembhavi, A.A.; Brown, M.A.; Kirschke, H.; Knight, C.G.; Tamai, M.; Hanada, K. l-Trans-epoxysuccinyl-leucylamido(4-guanidino) butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem. J. 1982, 201, 189–198.
[40]  Gunther, C.; Schlereth, A.; Udvardi, M.; Ott, T. Metabolism of reactive oxygen species is attenuated in leghemoglobin-deficient nodules of Lotus japonicus. Mol. Plant Microbe Inter. 2007, 20, 1596–1603, doi:10.1094/MPMI-20-12-1596.
[41]  Swaraj, K.; Bishnoi, N. Physiological and biochemical basis of nodule senescence in legumes: A review. Plant Physiol. Biochem. 1996, 23, 105–116.
[42]  Appleby, C.A. Leghemoglobin and Rhizobium respiration. Ann. Rev. Plant Physiol. 1984, 33, 443–478, doi:10.1146/annurev.pp.35.060184.002303.
[43]  Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685, doi:10.1038/227680a0.
[44]  Salvesen, G.; Nagase, H. Inhibition of proteolytic enzymes. In Proteolytic Enzymes: A Practical Approach; Beynon, R.J., Bond, J.S., Eds.; IRL Press at Oxford University Press: Oxford, UK, 1989; pp. 83–104.
[45]  Al-Karaki, G.N. Morphological and yield traits of wild legume (Tetragonolobus palaestinus Boiss) populations. J. Agron. Crop Sci. 2000, 184, 267–270, doi:10.1046/j.1439-037x.2000.00393.x.
[46]  Ashraf, M.; Iram, A. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 2005, 200, 535–546, doi:10.1016/j.flora.2005.06.005.
[47]  Turner, G.L.; Gibson, A.H. Measurement of nitrogen fixation by indirect means. In Methods for Evaluating Biological Nitrogen Fixation; Bergersen, F.J., Ed.; John Wiley and Sons: New York, NY, USA, 1980; pp. 111–138.
[48]  Van de Velde, W.; Guerra, J.C.P.; De Keyser, A.; De Rycke, R.; Rombauts, S.; Maunoury, N.; Mergaert, P.; Kondorosi, E.; Holsters, M.; Goormachtig, S. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol. 2006, 141, 711–720.
[49]  Fenta, B.A.; Urte Schlüter, U.; Garcia, B.M.; DuPlessis, M.; Foyer, C.H.; Kunert, K.J. Identification and Application of Phenotypic and Molecular Markers for Abiotic Stress Tolerance in Soybean. In Soybean—Genetics and Novel Techniques for Yield Enhancement; Krezhova, D., Ed.; InTech: Shanghai, China, 2011; pp. 181–200.
[50]  Phytozome, Version 9.1: Biomart. Joint Genome Institute, Center for Integrative Genomics and University of California Regents: USA, 2006–2013. Available online: http://www.phytozome.net/biomart (accessed on 12 July 2013).
[51]  SoyBase and the Soybean Breeder’s Toolbox. USDA-ARS and IOWA State University, 2010. 2010. Available online: http://soybase.org (accessed on 12 July 2013).
[52]  Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38, 843–846, doi:10.1093/nar/gkp798.
[53]  LIS. Legume Information System, USDA-ARS and National Center for Genome Resources, 2013. 2013. Available online: http://comparative-legumes.org (accessed on 12 July 2013).
[54]  Legume Base. University of Miyazaki: Miyazaki, Japan, 2009. Available online: http://www.legumebase.brc.miyazaki-u.ac.jp (accessed on 12 July 2013).
[55]  Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183.
[56]  Van der Hoorn, R.A.L.; Leeuwenburgh, M.A.; Bogyo, M.; Joosten, M.H.A.J.; Peck, S.C. Activity profiling of papain-like cysteine proteases in plants. Plant Physiol. 2004, 135, 1170–1178, doi:10.1104/pp.104.041467.
[57]  Martínez, D.E.; Bartoli, C.G.; Grbic, V.; Guiamet, J.J. Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J. Exp. Bot. 2007, 58, 1099–1107, doi:10.1093/jxb/erl270.
[58]  Mochida, K.; Shinozaki, K. Advances in Omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol. 2011, 52, 2017–2038, doi:10.1093/pcp/pcr153.
[59]  Mardis, E. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008, 24, 133–141, doi:10.1016/j.tig.2007.12.007.
[60]  Tran, L.S.; Mochida, K. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct. Integr. Genomics 2010, 10, 447–462, doi:10.1007/s10142-010-0178-z.
[61]  Severin, A.J.; Woody, J.L.; Bolon, Y.T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E.; et al. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010, 10, 160, doi:10.1186/1471-2229-10-160.
[62]  Van der Vyver, C.; Schneidereit, J.; Driscoll, S.; Turner, J.; Kunert, K.; Foyer, C.H. Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotech. J. 2003, 1, 101–112, doi:10.1046/j.1467-7652.2003.00010.x.
[63]  Martinez, M.; Diaz-Mendoza, M.; Carrillo, L.; Diaz, I. Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBSLett. 2007, 581, 2914–2918, doi:10.1016/j.febslet.2007.05.042.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413