全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change

DOI: 10.3390/agronomy3020419

Keywords: abiotic stress, climate change, landraces, wild relatives, genomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Extreme climatic variation is predicted with climate change this century. In many cropping regions, the crop environment will tend to be warmer with more irregular rainfall and spikes in stress levels will be more severe. The challenge is not only to raise agricultural production for an expanding population, but to achieve this under more adverse environmental conditions. It is now possible to systematically explore the genetic variation in historic local landraces by using GPS locators and world climate maps to describe the natural selection for local adaptation, and to identify candidate germplasm for tolerances to extreme stresses. The physiological and biochemical components of these expressions can be genomically investigated with candidate gene approaches and next generation sequencing. Wild relatives of crops have largely untapped genetic variation for abiotic and biotic stress tolerances, and could greatly expand the available domesticated gene pools to assist crops to survive in the predicted extremes of climate change, a survivalomics strategy. Genomic strategies can assist in the introgression of these valuable traits into the domesticated crop gene pools, where they can be better evaluated for crop improvement. The challenge is to increase agricultural productivity despite climate change. This calls for the integration of many disciplines from eco-geographical analyses of genetic resources to new advances in genomics, agronomy and farm management, underpinned by an understanding of how crop adaptation to climate is affected by genotype × environment interaction.

References

[1]  Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[2]  Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecented seasonal heat. Science 2009, 323, 240–244, doi:10.1126/science.1164363.
[3]  Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for Food Security in 2030. Science 2008, 319, 607–610, doi:10.1126/science.1152339.
[4]  Schafleitner, R.; Ramirez, J.; Jarvis, A.; Evers, D.; Gutierrez, R.; Scurrah, M. Adaptation of the Potato Crop to Changing Climates. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 11; pp. 287–297.
[5]  Singh, R.P.; Vara Prasad, P.V.; Sharma, A.K.; Raja Reddy, K. Impacts of High-Temperature Stress and Potential Opportunities for Breeding. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 5.1; pp. 166–185.
[6]  Lafarge, T.; Peng, S.; Hasegawa, T.; William, P.; Quick, S.V.; Jagadish, K.; Wassmann, R. Genetic Adjustment to Changing Climates: Rice. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 12; pp. 298–313.
[7]  Vadez, V.; Kholova, J.; Choudhary, S.; Zindy, P.; Terrier, M.; Krishnamurthy, L.; Ratna Kumar, P.; Turner, N.C. Responses to Increased Moisture Stress and Extremes: Whole Plant Response to Drought under Climate Change. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 5.2; pp. 186–197.
[8]  Lotze-Campden, H. Climate Change, Population Growth, and Crop Production: An Overview. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 1; pp. 1–11.
[9]  Redden, R.J.; Yadav, S.S.; Hatfield, J.L.; Prasanna, B.M.; Vasal, S.K.; Lafarge, T. The Potential of Climate Change Adjustment in Crops: A Synthesis. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 24; pp. 482–494.
[10]  Turner, N.C.; Meyer, R. Synthesis of Regional Impacts and Global Agricultural Adjustments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 4; pp. 156–165.
[11]  Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change-opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268, doi:10.1071/CP11303.
[12]  Diakité, L.; Sidibé, A.; Smale, M.; Grum, M. Seed Value Chains for Sorghum and Millet in Mali. A State-Based System in Transition; IFPRI Discussion Paper 00749; International Food Policy Research Institute: Washington, DC, USA, 2008.
[13]  Uprety, D.C.; Sirohi, G.S. Comparative study on the effect of water stress on the photosynthesis and water relations of triticale, rye and wheat. J. Agron. Crop Sci. 1987, 159, 349–355, doi:10.1111/j.1439-037X.1987.tb00113.x.
[14]  Gowda, C.L.L.; Saxena, K.B.; Srivastava, R.K.; Upadhyaya, H.D.; Silim, S.N. Pigeonpea: From an Orphan to A Leader in Food Legumes. In Biodiversity in Agriculture: Domestication, Evolution, and Sustainability; Cambridge University Press: New York, NY, USA, 2011; pp. 362–373. ISBN 9780521764599.
[15]  Bennett, E. Adaptation in Wild and Cultivated Plant Populations. In Genetic Resources in Plants—Their Exploration and Cultivation; Frankel, O.H., Bennett, E., Eds.; IBP Handbook No 11; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 115–129.
[16]  Vigouroux, Y.; Mariac, C.; De Mita, S.; Pham, J.-L.; Gerárd, B.; Sagnard, F.; Deu, M.; Chantereau, J.; Ali, A.; Ndjeung, J.; Thuillet, A.C.; Daidou, A.A.; Bezancon, G. Selection for early flowering crop associated climatic variations in the Sahel. PloS One 2011, 6, e19563, doi:10.1371/journal.pone.0019563.
[17]  Bao, S.; He, Y.; Zong, X.; Wang, L.; Li, L.; Enneking, D.; Rose, I.A.; Leonforte, T.; Redden, R.J.; Paull, J. Collection of pea (Pisum. sativum) and faba bean (Vicia. faba) germplasm in Yunnan. Plant Genet. Resour. Newsl. FAO Bioversity 2008, 156, 11–22.
[18]  Chenbang, H.; Yujiao, L.; Kunlun, W.; Mingyi, Y.; Qinhua, F.; Yang, L.; Qingbiao, Y.; Jianping, G.; Rose, I.A.; Redden, R.J.; et al. Collecting and surveying landraces of pea (Pisum. sativum) and faba bean (Vicia. faba) in Qinghai province of China. Plant Genet. Resour. Newsl. FAO Bioversity 2008, 156, 1–10.
[19]  Frankel, O.H.; Bennett, E. Genetic Resources-Introduction. In Genetic Resources in Plants—Their Exploration and Conservation; Frankel, O.H., Bennett, E., Eds.; IBP Handbook No 11; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 7–17.
[20]  Mercer, K.L.; Perales, H. Evolutionary response of landraces to climatic change in centres of diversity. Evol. Appl. 2010, 3, 480–493, doi:10.1111/j.1752-4571.2010.00137.x.
[21]  Trethowan, R.M.; Mahmood, T. Genetic Options for Improving Productivity of Wheat in Water-Linited and Temperature-Stressed Environments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 7; pp. 218–237.
[22]  Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, pp. 1965–1978. Available online: http://www.worldclim.org/current (accessed on 7 May 2013).
[23]  Upadhyaya, H.D.; Dwivedi, S.L.; Ambrose, M.; Ellis, N.; Berger, J.; Smykal, P.; Bebouck, D.; Dumet, D.; Flavell, A.; Sharma, S.K.; et al. Legume genetic resources: Management, diversity assessment, and utilisation in crop improvement. Euphytica 2011, 180, 27–47, doi:10.1007/s10681-011-0449-3.
[24]  Li, L.; Redden, R.J.; Zong, X.; Berger, J.D.; Bennett, S.J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet. Resour. Crop Evol. Available online: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10722-013–9955-6 (accessed on 7 May 2013).
[25]  Islam, F.; Beebe, S.; Munoz, M.; Tohme, J.; Redden, R.J.; Basford, K.E. Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool. Theor. Appl. Genet. 2004, 108, 243–252, doi:10.1007/s00122-003-1437-3.
[26]  Berger, J.D.; Mackay, M.C.; Street, K.A.; Konopka, J.; Adhikari, K.; Clarke, H.J.; Sandhu, J.S.; Nayyar, H. Emerging Opportunities for Agriculture: Investigating Plant Adaptation by Characterizing Germplasm Collection Habitats. In Proceedings of the 14th Australian Agronomy Conference, Global Issues, Paddock Action, 5395, Adelaide, Australia, 21–25 September 2008.
[27]  Ehlers, J.D.; Hall, A.E. Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res. 1998, 55, 11–21, doi:10.1016/S0378-4290(97)00055-5.
[28]  Hall, A.E. Breeding Cowpea for Future Climates. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 15; pp. 340–355.
[29]  Abbo, S.; Berger, J.; Turner, N.C. Evolution of cultivated chickpea: Four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 2003, 30, 1081–1087, doi:10.1071/FP03084.
[30]  Mayr, E. Systematics and the Origin of Species; Columbia Univ. Press: New York, NY, USA, 1942.
[31]  Ladizinsky, G. The Course of Reducing and Maintaining Genetic Diversity under Domestication. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998. Chapter 3; pp. 113–126.
[32]  Ladizinsky, G. Origins of Agriculture. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998. Chapter 1; pp. 1–60.
[33]  Meyer, R.S.; DuVal, A.E.; Jensen, H.R. Patterns and processes in crop domestication: An analysis of 203 global food crops. New Phytol. 2013, 196, 29–48, doi:10.1111/j.1469-8137.2012.04253.x.
[34]  Vardi, A.; Zohary, D. Introgression in wheat via triploid hybrids. Heredity 1967, 22, 541–560, doi:10.1038/hdy.1967.69.
[35]  Hancock, J.F. The Dynamics of Plant Domestication. In Plant Evolution and the Origin of Crop Species, 3rd ed.; CABI: Wallingford, UK, 2012. Chapter 7; pp. 114–131.
[36]  Nguyen, T.T.; Taylor, P.W.J.; Redden, R.J.; Ford, R. Mining resistance to Ascochyta. rabiei in a wild Cicer. germplasm collection. Aust. J. Exp. Agric. 2005, 45, 1291–1296, doi:10.1071/EA04031.
[37]  Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 227, 1063–1066, doi:10.1126/science.277.5329.1063.
[38]  Xue, G.-P.; McIntyre, C.L. Wild Relative and Transgenic Innovation for Enhancing Crop Adaptation to Warmer and Drier Climate. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011. Chapter 27; pp. 522–545.
[39]  Gur, A.; Zamit, D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2004, 2, 1610–1615.
[40]  Ladizinsky, G. Genetic Resources for Future Crop Evolution. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998. Chapter 7; pp. 209–222.
[41]  Redden, R.J.; Berger, J.D. History and Origin of Chickpea. In Chickpea Breeding & Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007. Chapter 1; pp. 1–13.
[42]  Ladizinsky, G. Weeds and Their Evolution. In Plant Evolution under Domestication; Kluwer Academic Publishers: Dortrecht, The Netherlands, 1998. Chapter 5; pp. 156–159.
[43]  Ellstrand, N.C.; Prentice, H.C.; Hancock, J.F. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 1999, 30, 539–563, doi:10.1146/annurev.ecolsys.30.1.539.
[44]  Haijar, R.; Hodgins, T. The use of wild relatives in crop improvement: A survey of developments over the last 30 years. Euphytica 2007, 156, 1–13, doi:10.1007/s10681-007-9363-0.
[45]  Erskine, W.; Sarker, A.; Ashraf, M. Reconstructing an ancient bottleneck of the movement of the lentil (Lens culinaris ssp. culinaris) into South Asia. Genet. Resour. Crop Evol. 2010, 58, 373–381, doi:10.1007/s10722-010-9582-4.
[46]  Langridge, P.; Fleury, D. Making the most of the ‘omics’ for crop breeding. Trends Biotechnol. 2011, 29, 33–40, doi:10.1016/j.tibtech.2010.09.006.
[47]  Rafalski, J.A. Association genetics in crop improvement. Curr. Opin. Plant Biol. 2010, 13, 174–180, doi:10.1016/j.pbi.2009.12.004.
[48]  Bernado, R. Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci. 2009, 49, 419–425, doi:10.2135/cropsci2008.08.0452.
[49]  Jhanwar, S.; Priya, P.; Garg, R.; Parida, S.K.; Tyagi, A.K.; Jain, M. Transcriptome sequencing of wild chickpea as a rich redource for marker development. Plant Biotechnol. J. 2012, 10, 690–702, doi:10.1111/j.1467-7652.2012.00712.x.
[50]  Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630, doi:10.1016/j.tplants.2005.10.004.
[51]  Weller, J.L.; Chee liew, L.; Hecht, V.F.G.; Rajandan, V.; Laurie, R.E.; Ridge, S.; Wenden, B.; Vander Schoor, J.K.; Jaminon, O.; Blassiau, C.; et al. A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc. Natl. Acad. Sci. USA 2012, 109, 21158–21163, doi:10.1073/pnas.1207943110.
[52]  Xia, H.; Camus-Kulandaivelu, L.; Dtephan, W.; Tellier, A.; Zhang, Z. Nucleotide diversity patterns of local adaptation at drought related candidate genes in wild tomatoes. Mol. Ecol. 2010, 19, 4144–4154, doi:10.1111/j.1365-294X.2010.04762.x.
[53]  You, F.M.; Huo, N.; Deai, K.R.; Gu, Y.Q.; Luo, M.; McGuire, P.; Dvorak, J.; Anderson, O. Annotation-based genome-wide SNP discovery in the large and complex Aegilops. tauschii genome using next-generation sequencing without a reference genome. BMC Genomics 2011, 12, 59–84.
[54]  Xue, G.P.; McIntyre, C.L.; Jenkins, C.L.D.; Glassop, D.; van Herwaarden, A.F.; Shorter, R. Molecular dissection of variation in carbohydrate metabolism related to water soluble carbohydrate accumulation in stems of wheat (Triticum. aestivum L.). Plant Physiol. 2008, 146, 441–454.
[55]  Varshney, R.K.; Nayak, S.N.; Gregory, D.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 27, 522–530, doi:10.1016/j.tibtech.2009.05.006.
[56]  Edwards, D.; Batley, J.; Snowden, R.J. Assessing complex crop genomes with next-generation sequencing. Theor. Appl. Genet. 2013, 126, 1–11, doi:10.1007/s00122-012-1964-x.
[57]  Brenchley, R.; Spannagl, M.; Pfeifer, M.; Barker, G.L.A.; D’Amore, R.; Allen, A.; McKenzie, N.; Kramer, M.; Kerhornou, A.; Bolser, D.; et al. Analysis of the bread wheat genome using whole-genome shot-gun sequencing. Nature 2012, 421, doi:10.1038/nature11650.
[58]  Redden, R. The effect of epistasis on chromosome mapping of quantitative characters in wheat. II. Agronomic characters. Aust. J. Agric. Res. 1991, 42, 335–345, doi:10.1071/AR9910335.
[59]  Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant breeding program. Aust. J. Agric. Res. 1963, 14, 742–754, doi:10.1071/AR9630742.
[60]  Jordan, D.R.; Mace, E.S.; Cruickshank, A.W.; Hunt, C.H.; Henzell, R.H. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 2011, 51, 1444–1457, doi:10.2135/cropsci2010.06.0326.
[61]  Redden, R.J.; Basford, K.E.; Kroonenberg, P.M.; Amirul Islam, F.M.; Ellis, R.; Wang, S.; Cao, Y.; Zong, X.; Wang, X. Variation in adzuki bean (Vigna. angularis) germplasm grown in China. Crop Sci. 2009, 49, 771–782, doi:10.2135/cropsci2008.03.0175.
[62]  Zong, X.; Redden, R.J.; Liu, U.Q.; Wang, S.; Guan, J.; Liu, J.; Xu, Y.; Liu, X.; Gu, J.; Yan, L.; et al. Analysis of a diverse global Pisum. sp. Collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor. Appl. Genet. 2009, 118, 193–204, doi:10.1007/s00122-008-0887-z.
[63]  Wang, H.; Zong, X.; Guan, J.; Yang, T.; Sun, X.; Ma, Y.; Redden, R. Genetic diversity and relationship of global faba bean (Vicia. faba L.) germplasm revealed by ISSR markers. Theor. Appl. Genet. 2012, 124, 789–797, doi:10.1007/s00122-011-1750-1.
[64]  Wang, S.M.; Redden, R.J.; Hu, J.P.; Desborough, P.J.; Lawrence, P.L.; Usher, T. Chinese adzuki bean germplasm: 1. Evaluation of agronomic traits. Aust. J. Agric. Res. 2001, 52, 671–681, doi:10.1071/AR00104.
[65]  Desborough, P.; Lawrence, P.; Redden, R.; Xuxiao, Z. Characterisation of Response to Temperature and Photoperiod in a Core Collection of Adzuki Bean from China. In Plant Breeding for the 11th Millennium; Proceedings of the 12th Australasian Plant Breed Conference, Perth, Australia, 15–20 September 2002; McComb, J., Ed.; pp. 565–568.
[66]  Lopes, M.S.; Reynolds, M.P.; Jalal-Kamali, M.R.; Moussa, M.; Feltaous, Y.; Tahir, I.S.A.; Barma, N.; Vargas, M.; Mannes, Y.; Baum, M. The yield correlations of selectable phenotypic traits in a population of advanced spring lines grown in warm and drought environments. Field Crops Res. 2012, 128, 129–136, doi:10.1016/j.fcr.2011.12.017.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413