全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Agronomy  2013 

Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change

DOI: 10.3390/agronomy3020433

Keywords: abiotic stress, disease resistance, crop improvement, genetic diversity, introgression, Phaseolus vulgaris

Full-Text   Cite this paper   Add to My Lib

Abstract:

Common bean ( Phaseolus vulgaris L.) is an important legume crop worldwide. However, abiotic and biotic stress limits bean yields to <600 kg ha ?1 in low-income countries. Current low yields result in food insecurity, while demands for increased yields to match the rate of population growth combined with the threat of climate change are significant. Novel and significant advances in genetic improvement using untapped genetic diversity available in crop wild relatives and closely related species must be further explored. A meeting was organized by the Global Crop Diversity Trust to consider strategies for common bean improvement. This review resulted from that meeting and considers our current understanding of the genetic resources available for common bean improvement and the progress that has been achieved thus far through introgression of genetic diversity from wild relatives of common bean, and from closely related species, including: P. acutifolius, P. coccineus, P. costaricensis and P. dumosus. Newly developed genomic tools and their potential applications are presented. A broad outline of research for use of these genetic resources for common bean improvement in a ten-year multi-disciplinary effort is presented.

References

[1]  Crops and Plants [Online]. USDA-NASS: Washington, DC, USA, 2012. Available online: http://www.nass.usda.gov/ (accessed on 6 May 2013).
[2]  Palomino, V.R. Bayesian Analysis of a Linear Mixed Model to Measure the Impact of Climate Change on Yield of Common Bean for the Year 2030 Worldwide. Master’s Thesis, University of Puerto Rico, Mayaguez, Puerto Rico, 2012.
[3]  Acosta-Gallegos, J.A.; Kelly, J.D.; Gepts, P. Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci. 2007, 47, S44–S49.
[4]  Rowlands, D.; Frame, D.J.; Ackerley, D.; Aina, T.; Booth, B.B.B.; Christensen, C.; Collins, M.; Faull, N.; Forest, C.E.; Grandey, B.S.; et al. Broad range of 2050 warming from an observationally constrained large climate model ensemble. Nat. Geosci. 2012, 5, 256–260, doi:10.1038/ngeo1430.
[5]  Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[6]  Beebe, S.; Ramirez, J.; Jarvis, A.; Rao, I.M.; Mosquera, G.; Bueno, J.M.; Blair, M.W. Genetic Improvement of Common beans and the Challenges of Climate Change. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2012; pp. 356–369.
[7]  Singh, S.P.; Terán, H.; Lema, M.; Webster, D.M.; Strausbaugh, C.A.; Miklas, P.N.; Schwartz, H.F.; Brick, M.A. Seventy-five years of breeding dry bean of the Western USA. Crop Sci. 2007, 47, 1–9, doi:10.2135/cropsci2005.11.0401.
[8]  Shisanya, C.A. Improvement of drought adapted tepary bean (Phaseolus acutifolius A. Gray var. latifolius) yield through biological nitrogen fixation in semi-arid SE-Kenya. Eur. J. Agron. 2002, 16, 13–24, doi:10.1016/S1161-0301(01)00117-4.
[9]  Blair, M.W.; Iriarte, G.; Beebe, S. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor. Appl. Genet. 2006, 112, 1149–1163, doi:10.1007/s00122-006-0217-2.
[10]  Koinange, E.M.K.; Singh, S.P.; Gepts, P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996, 36, 1037–1045, doi:10.2135/cropsci1996.0011183X003600040037x.
[11]  Isely, D. Phaseolus. In The Jepson Manual—Higher Plants of California; Hickman, J.C., Ed.; University of California Press: Berkeley, CA, USA, 1993; p. 641.
[12]  Westphal, E. Pulses in Ethiopia: Their Taxonomy and Agricultural Significance; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1974; Volume 815, pp. 140–151.
[13]  Gepts, P. Phaseolin as an Evolutionary Marker. In Genetic Resources of Phaseolus Beans; Gepts, P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 215–241.
[14]  Toro-Chica, O.; Ocampo, C.H.; Debouck, D.G. Phaseolin: Variability and reference materials in wild and cultivated common bean. Annu. Rep. Bean Improv. Coop. (USA) 2007, 50, 69–70.
[15]  Khairallah, M.M.; Sears, B.B.; Adams, M.W. Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: Insights on the domestication of the common bean. Theor. Appl. Genet. 1992, 84, 915–922.
[16]  Becerra-Velásquez, V.L.; Gepts, P. RFLP diversity of common bean (Phaseolus vulgaris) in its centres of origin. Genome 1994, 37, 256–263, doi:10.1139/g94-036.
[17]  Bitocchi, E.; Nanni, L.; Bellucci, E.; Rossi, M.; Giardini, A.; Spagnoletti-Zeuli, P.; Logozzo, G.; Stougaard, J.; McClean, P.; Attene, G.; Papa, R. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc. Natl. Acad. Sci. USA 2012, 109, 788–796, doi:10.1073/pnas.1108973109.
[18]  Nabhan, G.P. Native crop diversity in Aridoamerica: Conservation of regional gene pools. Econ. Bot. 1985, 39, 387–399, doi:10.1007/BF02858746.
[19]  Drewes, S.I. Prospección y colecta de germoplasma silvestre de Phaseolus vulgaris en la zona central de Argentina. Plant Genet. Resour. Newsl. 2008, 155, 9–14.
[20]  Becerra-Velásquez, V.; Paredes-Cárcomo, M.; Debouck, D.G. Genetic relationships of common bean (Phaseolus vulgaris L.) race Chile with wild Andean and Mesoamerican germplasm. Chilean J. Agric. Res. 2011, 71, 3–15, doi:10.4067/S0718-58392011000100001.
[21]  Toro-Chica, O.; Tohme, J.; Debouck, D.G. International Board for Plant Genetic Resources and International Center for Tropical Agriculture: Cali, Colombia, 1990; p. 106.
[22]  Debouck, D.G. Cahiers de Phaséologie: Section PHASEOLI; International Center for Tropical Agriculture (CIAT): Cali, Colombia, 2012; p. 172.
[23]  Debouck, D.G.; Toro, O.; Paredes, O.M.; Johnson, W.C.; Gepts, P. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ. Bot. 1993, 47, 408–423, doi:10.1007/BF02907356.
[24]  Gepts, P.; Osborn, T.C.; Rashka, K.; Bliss, F.A. Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): Evidence for multiple centers of domestication. Econ. Bot. 1986, 40, 451–468, doi:10.1007/BF02859659.
[25]  Koenig, R.L.; Singh, S.P.; Gepts, P. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 1990, 44, 50–60, doi:10.1007/BF02861066.
[26]  Freyre, R.; Ríos, R.; Guzmán, L.; Debouck, D.G.; Gepts, P. Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ. Bot. 1996, 50, 195–215, doi:10.1007/BF02861451.
[27]  Tohme, J.; González, D.O.; Beebe, S.; Duque, M.C. AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 1996, 36, 1375–1384, doi:10.2135/cropsci1996.0011183X003600050048x.
[28]  Chacón, S.M.I.; Pickersgill, B.; Debouck, D.G.; Arias, J.S. Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Syst. Evol. 2007, 266, 175–195, doi:10.1007/s00606-007-0536-z.
[29]  Chacón, S.M.I.; Pickersgill, B.; Debouck, D.G. Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor. Appl. Genet. 2005, 110, 432–444, doi:10.1007/s00122-004-1842-2.
[30]  Kami, J.; Becerra-Velásquez, V.; Debouck, D.G.; Gepts, P. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc. Natl. Acad. Sci. USA 1995, 92, 1101–1004.
[31]  Graham, A. Late Cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments; Missouri Botanical Garden Press: St. Louis, MI, USA, 2010; p. 617.
[32]  Romero-Andreas, J.; Yandell, B.S.; Bliss, F.A. Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor. Appl. Genet. 1986, 72, 123–128.
[33]  Acosta-Gallegos, J.A.; Quintero, C.; Vargas, J.; Toro, O.; Tohme, J.; Cardona, C. A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet. Resour. Crop Evol. 1998, 45, 235–242, doi:10.1023/A:1008636132108.
[34]  Osborn, T.C.; Blake, T.; Gepts, P.; Bliss, F.A. Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor. Appl. Genet. 1986, 71, 847–855.
[35]  Lynch, J.; González, A.; Tohme, J.M.; Garcia, J.A. Variation in characters related to leaf photosynthesis in wild bean populations. Crop Sci. 1992, 32, 633–640, doi:10.2135/cropsci1992.0011183X003200030012x.
[36]  González, A.; Lynch, J.; Tohme, J.M.; Beebe, S.E.; Macchiavelli, R.E. Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci. 1995, 35, 1468–1476, doi:10.2135/cropsci1995.0011183X003500050034x.
[37]  Acosta-Gallegos, J.A.; Aguilar Garzón, B.; Rodríguez-Guerra, R.; Mendoza Hernández, M.; Guzman-Maldonado, H.; Kelly, J.D. Seed yield of black seeded lines introgressed with wild Phaseolus vulgaris. Annu. Rep. Bean Improv. Coop. (USA) 2007, 50, 23–24.
[38]  Tanksley, S.D.; Grandillo, S.; Fulton, T.M.; Zamir, D.; Eshed, Y.; Petiard, V.; López, J.; Beck-Bunn, T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 1996, 92, 213–224, doi:10.1007/BF00223378.
[39]  Xiao, J.; Li, J.; Grandillo, S.; Nag-Ahn, S.; Yuan, L.; Tanksley, S.D.; McCouch, S.R. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 1998, 150, 899–909.
[40]  Berglund-Brücher, O.; Brücher, H. The South American wild bean (Phaseolus aborigineus Burk.) as ancestor of the common bean. Econ. Bot. 1976, 30, 257–272, doi:10.1007/BF02909734.
[41]  Gentry, H.S. Origin of the common bean, Phaseolus vulgaris L. Econ. Bot. 1969, 23, 55–69, doi:10.1007/BF02862972.
[42]  Miranda-Colín, S. Origen de Phaseolus vulgaris L. (Frijol común). Agrociencia 1967, 1, 99–109.
[43]  Heiser, C.B. Cultivated plants and cultural diffusion in nuclear America. Am. Anthropol. 1965, 67, 930–949.
[44]  Kaplan, L. Phaseolus: Diffusion and Centers of Origin. In Man across the Sea: Problems in Pre-Columbian Contacts; Riley, C.L., Kelley, J.C., Pennington, C.W., Randa, R.L., Eds.; University of Texas Press: Austin, TX, USA, 1971; pp. 416–427.
[45]  Kwak, M.; Kami, J.A.; Gepts, P. The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci. 2009, 49, 554–563, doi:10.2135/cropsci2008.07.0421.
[46]  Maréchal, R.; Mascherpa, J.; Stainier, F. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna. (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 1978, 28, 1–273.
[47]  Schmit, V.; du Jardin, P.; Baudoin, J.P.; Debouck, D.G. Use of chloroplast DNA polymorphisms for the phylogenetic study of seven Phaseolus taxa including P. vulgaris and P. coccineus. Theor. Appl. Genet. 1993, 87, 506–516.
[48]  Delgado-Salinas, A.O.; Turley, T.; Richman, A.; Lavin, M. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae). Syst. Bot. 1999, 24, 438–460, doi:10.2307/2419699.
[49]  Delgado-Salinas, A.; Bibler, R.; Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 2006, 31, 779–791, doi:10.1600/036364406779695960.
[50]  Freytag, G.F.; Debouck, D.G. Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. SIDA Bot. Misc. 2002, 23, 1–300.
[51]  Schmit, V.; Debouck, D.G. Observations on the origin of Phaseolus polyanthus Greenman. Econ. Bot. 1991, 45, 345–364, doi:10.1007/BF02887077.
[52]  Neill, D.A.; Klitgaard, B.B.; Lewis, G.P. Fabaceae. In Catalogue of the Vascular Plants of Ecuador; Jorgensen, P.M., León-Yánez, S., Eds.; Missouri Botanical Garden Press: St. Louis, MI, USA, 1999; pp. 468–484.
[53]  Debouck, D.G.; Smartt, J. Beans, Phaseolus spp. (Leguminosae-Papilionoideae). In Evolution of Crop Plants, 2nd; Smartt, J., Simmonds, N.W., Eds.; Longman Scientific & Technical: London, UK, 1995; pp. 287–294.
[54]  Araya-Villalobos, R.; González-Ugalde, W.G.; Camacho-Chacón, F.; Sánchez-Trejos, P.; Debouck, D.G. Observations on the geographic distribution, ecology and conservation status of several Phaseolus bean species in Costa Rica. Genet. Resour. Crop Evol. 2001, 48, 221–232, doi:10.1023/A:1011206115339.
[55]  Freytag, G.F.; Debouck, D.G. Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, Central America. Novon 1996, 6, 157–163, doi:10.2307/3391913.
[56]  Ramírez-Delgadillo, R.; Delgado-Salinas, A. A new species of Phaseolus (Fabaceae) from west-central Mexico. SIDA 1999, 18, 637–646.
[57]  Delgado-Salinas, A.; Thulin, M.; Pasquet, R.; Weeden, N.; Lavin, M. Vigna (Leguminosae) sensu lato: The names and identities of the American segregate genera. Am. J. Bot. 2011, 98, 1694–1715, doi:10.3732/ajb.1100069.
[58]  Lackey, J.A. A review of generic concepts in American Phaseolinae (Fabaceae, Faboideae). Iselya 1983, 2, 21–64.
[59]  Lavin, M.; Herendeen, P.S.; Wojciechowski, M.F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst. Biol. 2005, 54, 575–594, doi:10.1080/10635150590947131.
[60]  Gepts, P.; Papa, R.; Coulibaly, S.; González-Mejía, A.; Pasquet, R. Wild Legume Diversity and Domestication?Insights from Molecular Methods. In Wild Legumes; Oono, K., Ed.; National Institute of Biological Resources: Tsukuba, Japan, 2000; pp. 19–31.
[61]  Serrano-Serrano, M.L.; Hernández-Torres, J.; Castillo-Villamizar, G.; Debouck, D.; Chacón, M.I. Gene pools in wild Lima bean (Phaseolus lunatus L.) from the Americas: Evidences for an Andean origin and past migrations. Mol. Phylogenet. Evol. 2010, 54, 76–87, doi:10.1016/j.ympev.2009.08.028.
[62]  Kuboyama, T.; Shintaku, Y.; Takeda, G. Hybrid plant of Phaseolus vulgaris L. and P. lunatus L. obtained by means of embryo rescue and confirmed by restriction endonuclease analysis of rDNA. Euphytica 1991, 54, 177–182.
[63]  Leonard, M.F.; Stephens, L.C.; Summers, W.L. Effect of maternal genotype on development of Phaseolus vulgaris L. x P. lunatus L. interspecific hybrid embryos. Euphytica 1987, 36, 327–332, doi:10.1007/BF00730679.
[64]  Kaplan, L.; Lynch, T. Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ. Bot. 1999, 53, 261–272, doi:10.1007/BF02866636.
[65]  Piperno, D.L. New Archaeobotanical Information on Early Cultivation and Plant Domestication Involving Microplant (Phytolith and Starch Grain) Remains. In Biodiversity in Agriculture?Domestication, Evolution, and Sustainability; Gepts, P., Famula, Th.R., Bettinger, R.L., Brush, S.B., Damania, A.B., McGuire, P.E., Qualset, C.O., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 136–159.
[66]  Piperno, D.L.; Dillehay, T.D. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proc. Natl. Acad. Sci. USA 2008, 105, 19622–19627, doi:10.1073/pnas.0808752105.
[67]  Ishimoto, M.; Suzuki, K.; Iwanaga, M.; Kikuchi, F.; Kitamura, K. Variation of seed?Amylase inhibitors in the common bean. Theor. Appl. Genet. 1995, 90, 425–429.
[68]  Seigler, D.S.; Maslin, B.R.; Conn, E.E. Cyanogenesis in the Leguminosae. In Advances in Legume Biology, Monographs in Systematic Botany from the Missouri Botanical Garden; Stirton, C.H., Zarucchi, J.L., Eds.; Missouri Botanical Garden: St. Louis, MO, USA, 1989; Volume 29, pp. 645–672.
[69]  Shreve, F.; Wiggins, I.L. Vegetation and Flora of the Sonoran Desert; Stanford University Press: Stanford, CA, USA, 1964; Volume 1, p. 840.
[70]  Balasubramanian, P.; Ahmad, F.; Vandenberg, A.; Hucl, P.J. Barriers to interspecific hybridization of common bean with Phaseolus angustissimus A. Gray and P. filiformis Bentham. J. Genet. Breed. 2005, 59, 321–328.
[71]  Maréchal, R.; Baudoin, J.P. Observations sur quelques hybrids dans le genre Phaseolus IV. L’hybride Phaseolus vulgaris × Phaseolus filiformis. Bull. Rech. Agron. Gembloux. 1978, 13, 233–240.
[72]  Bayuelo-Jiménez, J.; Debouck, D.G.; Lynch, J. Salinity tolerance in Phaseolus species during early vegetative growth. Crop Sci. 2002, 42, 2184–2192, doi:10.2135/cropsci2002.2184.
[73]  Buhrow, R. The wild beans of southwestern North America. Desert Plants 1983, 5, 67–88.
[74]  Mu?oz, L.C.; Blair, M.W.; Duque, M.C.; Tohme, J.; Roca, W. Introgression in common bean × tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci. 2004, 44, 637–645, doi:10.2135/cropsci2004.0637.
[75]  Lin, T.Y.; Markhart, A.H. Phaseolus acutifolius A. Gray is more heat tolerant than P. vulgaris L. in the absence of water stress. Crop Sci. 1996, 36, 110–114, doi:10.2135/cropsci1996.0011183X003600010020x.
[76]  Miklas, P.N.; Rosas, J.C.; Beaver, J.S.; Telek, L.; Freytag, G.F. Field performance of select tepary bean germplasm in the Tropics. Crop Sci. 1994, 34, 1639–1644, doi:10.2135/cropsci1994.0011183X003400060040x.
[77]  Brücher, H. The Wild Ancestor of Phaseolus vulgaris in South America. In Genetic Resources of Phaseolus Beans; Gepts, P., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 185–214.
[78]  Singh, S.P.; Terán, H.; Schwartz, H.; Otto, K.; Lema, M. White mold-resistant interspecific common bean germplasm lines VCW 54 and VCW 55. J. Plant Regist. 2009, 3, 191–197, doi:10.3198/jpr2008.11.0650crg.
[79]  Ramírez-Villegas, J.; Khoury, C.; Jarvis, A.; Debouck, D.G.; Guarino, L. A gap analysis methodology for collecting crop genepools: A case study with Phaseolus beans. PLoS One 2010, 5, 1–18.
[80]  Vázquez-García, J.A.; Cuevas-Guzmán, R.; Cochrane, T.S.; Iltis, H.H.; Santana-Michel, F.J.; Guzmán-Hernández, L. Flora de Manantlán. SIDA Bot. Misc. 1995, 13, 1–312.
[81]  Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066, doi:10.1126/science.277.5329.1063.
[82]  Beebe, S.; Rengifo, J.; Gaitan, E.; Duque, M.C.; Tohme, J. Diversity and origin of Andean landraces of common bean. Crop Sci. 2001, 41, 854–862, doi:10.2135/cropsci2001.413854x.
[83]  Bitocchi, E.; Bellucci, E.; Giardini, A.; Rau, D.; Rodriguez, M.; Biagetti, E.; Santilocchi, R.; Spagnoletti Zeuli, P.; Gioia, T.; Logozzo, G.; et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 2012, doi:10.1111/j.1469-8137.2012.04377.x.
[84]  Gepts, P.; Debouck, D.G. Origin, Domestication, and Evolution of the Common Bean (Phaseolus vulgaris L.). In Common Beans: Research for Crop Improvement; Schoonhoven, A.V., Ed.; Commonwealth Agricultural Bureaux International: Wallingford, UK, 1991; pp. 7–53.
[85]  Acevedo, M.; Steadman, J.R.; Rosas, J.C.; Venegas, J. Coevolution of the bean rust pathogen Uromyces appendiculatus with its wild, weedy and domesticated hosts (Phaseolus spp.) at a center of diversity. Annu. Rep. Bean Improv. Coop. (USA) 2008, 51, 22–23.
[86]  Acevedo, M.; Steadman, J.R.; Rosas, J.C.; Venegas, J. Characterization of virulence diversity of the bean rust pathogen Uromyces appendiculatus in wild bean populations as a tool for effective resistance gene deployment. Annu. Rep. Bean Improv. Coop. (USA) 2005, 48, 132–133.
[87]  Keneni, G.; Bekele, E.; Getu, E.; Imtiaz, M.; Damte, T.; Mulatu, B.; Dagne, K. Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability 2011, 3, 1399–1415, doi:10.3390/su3091399.
[88]  Osborn, T.C.; Alexander, D.C.; Sun, S.M.; Cardona, C.; Bliss, F.A. Insecticidal activity and lectin homology of arcelin seed protein. Science 1988, 240, 207–210.
[89]  Osborn, T.C.; Hartweck, L.M.; Harmsen, R.H.; Vogelzang, R.D.; Kmiecik, K.A.; Bliss, F.A. Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. Crop Sci. 2003, 43, 1570–1571, doi:10.2135/cropsci2003.1570.
[90]  Kornegay, J.; Cardona, C.; Posso, C.E. Inheritance of resistance to Mexican bean weevil in common bean determined by bioassay and biochemical tests. Crop Sci. 1993, 33, 589–594, doi:10.2135/cropsci1993.0011183X003300030034x.
[91]  Beaver, J.S.; Zapata, M.; Alameda, M.; Porch, T.G. Registration of PR0401-259 and PR0650-31 dry bean germplasm lines. J. Plant Regist. 2012, 6, 81–84, doi:10.3198/jpr2011.05.0283crg.
[92]  Acevedo, M.; Steadman, J.R.; Rosas, J.C.; Venegas, J. New sources of resistance to bean rust and implications for host-pathogen coevolution. Annu. Rep. Bean Improv. Coop. (USA) 2006, 49, 77–78.
[93]  Mkwaila, W.; Terpstra, K.A.; Ender, M.; Kelly, J.D. Identification of QTL for agronomic traits and resistance to white mold in wild and landrace germplasm of common bean. Plant Breed. 2011, 130, 665–672, doi:10.1111/j.1439-0523.2011.01876.x.
[94]  Kelly, J.; Long, B.; Blakely, N.; Terpstra, K. Dry bean yield trials, 2004. Available online: http://www.psm.msu.edu/VarietyTrials/Acrobat/04_DryBean_Report.pdf (accessed on 6 May 2013).
[95]  Wright, E.M.; Kelly, J.D. Mapping QTL for seed yield and canning quality following processing of black bean (Phaseolus vulgaris L.). Euphytica 2011, 179, 471–484, doi:10.1007/s10681-011-0369-2.
[96]  Ferwerda, F.H.; Bassett, M.J. Barriers to interspecific hybridization in crosses between Phaseolus coccineus L. (G35172) and Phaseolus vulgaris L. Annu. Rep. Bean Improv. Coop.(USA) 2000, 43, 21–22.
[97]  Singh, S.P.; Gutiérrez, J.A. Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 1984, 33, 337–345, doi:10.1007/BF00021130.
[98]  Acevedo, M.; Steadman, J.R.; Rosas, J.C. Uromyces appendiculatus in Honduras: Pathogen diversity and host resistance screening. Plant Dis. 2013, 97, 652–661, doi:10.1094/PDIS-02-12-0169-RE.
[99]  Singh, S.P.; Terán, H.; Beaver, J.S. Scarlet runner bean germplasm accessions G 35006 and G 35172 possess resistance to multiple diseases of common bean. Annu. Rep. Bean Improv. Coop.(USA) 2009, 52, 20–21.
[100]  Osorno, J.M.; Mu?oz, C.G.; Beaver, J.S.; Ferwerda, F.H.; Bassett, M.J.; Miklas, P.N.; Olczyk, T.; Bussey, B. Two genes from Phaseolus coccineus confer resistance to Bean Golden Yellow Mosaic Virus in common bean. J. Am. Soc. Hort. Sci. 2007, 132, 530–533.
[101]  Schwartz, H.F.; Otto, K.; Terán, H.; Lema, M. Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis. 2006, 90, 1167–1170, doi:10.1094/PD-90-1167.
[102]  McCoy, S.; Higgins, B.; Steadman, J.R. Use of multi site screening to identify and verify partial resistance to white mold in common bean in 2011. Annu. Rep. Bean Improv. Coop. (USA) 2012, 55, 153–154.
[103]  Wilkinson, R.E. Incorporation of Phaseolus coccineus germplasm may facilitate production of high yielding P. vulgaris lines. Annu. Rep. Bean Improv. Coop.(USA) 1983, 26, 28–29.
[104]  Miklas, P.N.; Zapata, M.; Beaver, J.S.; Grafton, K.F. Registration of four dry bean germplasms resistant to common bacterial blight: ICB-3, ICB-6, ICB-8 and ICB-1. Crop Sci. 1999, 39, 594, doi:10.2135/cropsci1999.0011183X003900020065x.
[105]  Schmit, V.; Baudoin, J.P. Screening for resistance to Ascochyta blight in populations of Phaseolus coccineus L. and P. polyanthus Greenman. Field Crops Res. 1992, 30, 155–165, doi:10.1016/0378-4290(92)90064-G.
[106]  Mahuku, G.S.; Jara, C.E.; Cajiao, C.; Beebe, S. Sources of resistance to Colletotrichum lindemuthianum in the secondary gene pool of Phaseolus vulgaris and in crosses of primary and secondary gene pools. Plant Dis. 2002, 86, 1383–1387, doi:10.1094/PDIS.2002.86.12.1383.
[107]  Freytag, G.F.; Bassett, M.J.; Zapata, M. Registration of XR-235-1-1 bean germplasm. Crop Sci. 1982, 22, 1268–1269, doi:10.2135/cropsci1982.0011183X002200060066x.
[108]  Zapata, M.; Freytag, G.; Wilkinson, R. Release of five common bean germplasm lines resistant to common bacterial blight W-BB-11, W-BB-20-1, W-BB-35, W-BB-52, and W-BB. J. Agric. Univ. Puerto Rico 2004, 88, 91–95.
[109]  Beaver, J.S.; Porch, T.G.; Zapata, M. Registration of ‘Verano’ white bean. J. Plant Regist. 2008, 2, 187–189, doi:10.3198/jpr2008.02.0110crc.
[110]  Ferwerda, F.H. The Investigation of Genetic Barriers to Interspecific Crosses between Phaseolus acutifolius A. Gray, Phaseolus coccineus L. and Phaseolus vulgaris L. and the Inheritance of Resistance to Bean Golden Mosaic Virus from P. coccineus L. Ph.D. Thesis, University of Florida, Gainsville, FL, USA, August 2001.
[111]  Koinange, E.M.K.; Gepts, P. Hybrid weakness in wild Phaseolus vulgaris L. J. Hered. 1982, 83, 135–139.
[112]  Butare, L.; Rao, I.; Lepoivre, P.; Polania, J.; Cajiao, C.; Cuasquer, J.; Beebe, S. New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 2011, 181, 385–404, doi:10.1007/s10681-011-0468-0.
[113]  Nabhan, G.P. Tepary beans: The effects of domestication on adaptation to arid environments. Arid Lands Nwsl. 1979, 10, 11–16.
[114]  Porch, T.G.; Ramirez, V.H.; Santana, D.; Harmsen, E.W. Evaluation of common bean for drought tolerance in Juana Diaz, Puerto Rico. J. Agron. Crop. Sci. 2009, 195, 328–334, doi:10.1111/j.1439-037X.2009.00375.x.
[115]  Federici, C.T.; Ehdaie, B.; Waines, J.D. Domesticated and wild tepary bean: Field performance with and without drought-stress. Agron. J. 1990, 82, 896–900, doi:10.2134/agronj1990.00021962008200050010x.
[116]  Markhart, A.H. Comparative water relation of Phaseolus vulgaris L. and Phaseolus acutifolius Gray. J. Plant Physiol. 1985, 77, 113–117, doi:10.1104/pp.77.1.113.
[117]  Bhardwaj, H.L.; Rangappa, M.; Hamama, A.A. Planting date and genotype effects on tepary bean productivity. HortScience 2002, 2, 317–318.
[118]  Thomas, C.V.; Manshardt, R.M.; Waines, J.G. Teparies as a source of useful traits for improving common beans. Desert Plants 1983, 5, 43–48.
[119]  Ferwerda, F.H.; Bassett, M.J.; Beaver, J.S. Viability of seed of reciprocal interspecific crosses between Phaseolus vulgaris L. and Phaseolus acutifolius A. Grey. Annu. Rep. Bean Improv. Coop. (USA) 2003, 46, 29–30.
[120]  Pratt, R.C. Gene transfer between tepary and common bean. Desert Plants 1983, 5, 57–63.
[121]  Haghighi, K.R.; Ascher, P.D. Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius from congruity backcrossing. Sex. Plant Reprod. 1988, 1, 51–58.
[122]  Anderson, N.O.; Ascher, P.D.; Haghighi, K. Congruity backcrossing as a means of creating genetic variability in self pollinated crops: seed morphology of Phaseolus vulgaris L. and P. acutifolius A. Gray hybrids. Euphytica 1996, 87, 211–224, doi:10.1007/BF00023748.
[123]  Mejía-Jiménez, A.; Mu?oz, C.; Jacobson, H.J.; Roca, W.M.; Singh, S.P. Interspecific hybridization between common and tepary beans: Increased hybrid embryo growth, fertility and efficiency of hybridization through recurrent and congruity backcrossing. Theor. Appl. Genet. 1994, 88, 324–331.
[124]  Singh, S.P.; Debouck, D.G.; Roca, W.W. Interspecific hybridization between Phaseolus vulgaris L. and P. parvifolius Freytag. Annu. Rep. Bean Improv. Coop. (USA) 1998, 4, 7–8.
[125]  Scott, M.E.; Michaels, T.E. Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. HortScience 1992, 27, 348–350.
[126]  Singh, S.P.; Mu?oz, C.G. Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci. 1999, 39, 80–89, doi:10.2135/cropsci1999.0011183X003900010013x.
[127]  McElroy, J.B. Breeding Dry Beans, Phaseolus vulgaris L., for Common Bacterial Blight Resistance Derived from Phaseolus acutifolius A. Gray. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1985.
[128]  Mutlu, N.; Urrea, C.A.; Miklas, P.N.; Pastor-Corrales, M.A.; Steadman, J.R.; Lindgren, D.T.J.; Reiser, J.; Vidaver, A.K.; Coyne, D.P. Registration of common bacterial blight, rust and bean common mosaic resistant Great Northern common bean germplasm line ABC-Weihing. J. Plant Regist. 2008, 2, 53–55, doi:10.3198/jpr2007.04.0197crc.
[129]  Mutlu, N.; Miklas, P.N.; Steadman, J.R.; Vidaver, A.M.; Lindgren, D.T.; Reiser, J.; Coyne, D.P.; Pator-Corrales, M.A. Registration of common bacterial blight resistant pinto bean germplasm line ABCP-8. Crop Sci. 2005, 45, 806–807, doi:10.2135/cropsci2005.0806.
[130]  Fourie, D.; Herselman, L. Application of molecular markers in breeding for bean common blight resistance in South Africa. Afr. Crop Sci. J. 2011, 19, 369–376.
[131]  Costa, J.G.C.; Rava, C.A. Linhagens de feijoeiro comum com fenótipos agron?micos favoráveis e resistência ao crestamento bacteriano comum e antracnose. Ciênc. Agrotec. Lavras 2003, 27, 1176–1182, doi:10.1590/S1413-70542003000500029.
[132]  Osorno, J.M.; Grafton, K.; Vanderwal, A.; Gegner, S. A new small red bean with improved resistance to common bacterial blight: Registration of ‘Rio Rojo’. J. Plant Regist. 2013, 8. in press.
[133]  Kusolwa, P.M.; Myers, J.R. Seed storage proteins ARL2 and its variants from the APA locus of wild tepary bean G40199 confers resistance to Acanthoscellides obtectus when expressed in common beans. Afr. Crop Sci. J. 2011, 19, 255–265.
[134]  Miklas, P.N.; Schwartz, H.F.; Salgado, M.O.; Beaver, J.S. Reaction of select tepary bean to Ashy Stem Blight and Fusarium Wilt. HortScience 1998, 33, 136–139.
[135]  Miklas, P.N.; Santiago, J. Reaction of select tepary bean to Bean Golden Mosaic Virus. HortScience 1996, 31, 430–432.
[136]  Pastor-Corrales, M.A.; Steadman, J.R.; Urrea, C.A.; Blair, M.W.; Venegas, J.P. The domesticated tepary bean accession G 40022 has broader resistance to the highly variable bean rust pathogen than the known rust resistance genes in common bean. Annu. Rep. Bean Improv. Coop. (USA) 2011, 54, 124–125.
[137]  Mogotsi, K.K. Phaseolus acutifolius A. Gray. In Plant Resources of Tropical Africa 1. Cereals and Pulses; Brink, M., Belay, G., Eds.; PROTA Foundation: Wageningen, The Netherlands, 2006; pp. 133–137.
[138]  Singh, S.P.; Debouck, D.G.; Roca, W.W. Successful interspecific hybridization between Phaseolus vulgaris L. and P. costaricensis Freytag & Debouck. Annu. Rep. Bean Improv. Coop. (USA) 1997, 40, 40–41.
[139]  Singh, S.P.; Terán, H.; Schwartz, H.F.; Otto, K.; Debouck, D.G.; Roca, W.; Lema, M. White mold-resistant, interspecific common bean breeding line VRW 32 derived from Phaseolus costaricensis. J. Plant Regist. 2013, 7, 95–99, doi:10.3198/jpr2012.02.0131crg.
[140]  Montero-Rojas, M.; Ortiz, M.; Beaver, J.S.; Siritunga, D. Genetic, morphological and cyanogen content evaluation of a new collection of Caribbean Lima bean (Phaseolus lunatus L.) landraces. Genet. Resour. Crop Evol. 2013, doi:10.1007/s10722-013-9989-9.
[141]  Hyten, D.L.; Song, Q.; Fickus, E.W.; Quigley, C.V.; Lim, J.-S.; Choi, I.-Y.; Hwang, E.-Y.; Pastor-Corrales, M.P.; Cregan, P.B. High-throughput SNP discovery and assay development in common bean. BMC Genomics 2010, 11, 475, doi:10.1186/1471-2164-11-475.
[142]  Phytozome. Available online: http://www.phytozome.net/commonbean (accessed on 6 May 2013).
[143]  Le, S.Q.; Durbin, R. SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Res. 2010, 21, 952–960.
[144]  Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping by sequencing (GBS) approach for high diversity species. PLoS One 2011, 6, e19379.
[145]  Kidd, J.M.; Graves, T.; Newman, T.; Fulton, R.; Hayden, H.S.; Malig, M.; Kallicki, J.; Kaul, R.; Wilson, R.K.; Eichler, E.E. A human genome structural variation sequencing resource reveals insights into mutation mechanisms. Cell 2011, 143, 837–847.
[146]  Cokus, S.J.; Feng, S.; Hang, X.; Chen, Z.; Merriman, B.; Haudenshcild, C.D.; Pradhan, S.; Nelson, S.F.; Pellegrini, M.; Jacobsen, S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452, 215–219, doi:10.1038/nature06745.
[147]  Rech, E.L.; Vianna, G.R.; Arag?o, F.J.L. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat. Protoc. 2008, 3, 410–418, doi:10.1038/nprot.2008.9.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413