全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Animals  2013 

Exploration of the Hypothalamic-Pituitary-Adrenal Axis to Improve Animal Welfare by Means of Genetic Selection: Lessons from the South African Merino

DOI: 10.3390/ani3020442

Keywords: robustness, stress, cortisol, hypothalamic-pituitary-adrenal axis, marker-assisted selection, SNP, sheep, animal welfare, behaviour

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal’s genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA), since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found.

References

[1]  Mormède, P.; Foury, A.; Terenina, E.; Knap, P.W. Breeding for robustness: The role of cortisol. Animal 2011, 5, 651–657, doi:10.1017/S1751731110002168.
[2]  Knap, P.W.; Rauw, W.M. Selection for high production in pigs. In Resource Allocation Theory Applied to Farm Animal Production; Rauw, W.M., Ed.; CABI Publishing: Wallingford, UK, 2009; pp. 210–229.
[3]  Knap, P.W. Breeding robust pigs. Austr. J. Exper. Agr. 2005, 45, 763–773, doi:10.1071/EA05041.
[4]  Beilharz, R.G. Environmental limit to genetic change. An alternative theorem of natural selection. J. Anim. Breed. Genet. 1998, 115, 433–437, doi:10.1111/j.1439-0388.1998.tb00365.x.
[5]  Cloete, S.W.P.; Olivier, J.J. South African Sheep and Wool Industry. In The International Sheep and Wool Handbook; Cottle, D.J., Ed.; Nottingham University Press: Nottingham, UK, 2010; pp. 95–112.
[6]  Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33, doi:10.1016/S0301-6226(98)00147-X.
[7]  Star, L.; Ellen, E.D.; Uitdehaag, K.; Brom, F.W.A. A plea to implement robustness into a breeding goal: Poultry as an example. J. Agr. Environ. Ethics 2008, 21, 109–125, doi:10.1007/s10806-007-9072-7.
[8]  Siegel, P.B.; Honaker, C.F.; Rauw, W.M. Selection for high production in poultry. In Resource Allocation Theory Applied to Farm Animal Production; Rauw, W.M., Ed.; CABI Publishing: Wallingford, UK, 2009; pp. 230–242.
[9]  Veerkamp, R.F.; Windig, J.J.; Calus, M.P.L.; Ouweltjes, W.; De Haas, Y.; Beerda, B. Selection for high production in dairy cattle. In Resource Allocation Theory Applied to Farm Animal Production; Rauw, W.M., Ed.; CABI Publishing: Wallingford, UK, 2009; pp. 243–260.
[10]  Van Rensburg, S.J. Reproductive physiology and endocrinology of normal and habitually aborting Angora goats. Onderstepoort J. Vet. Res. 1971, 38, 1–62.
[11]  Engelbrecht, Y.; Herselman, T.; Louw, A.; Swart, P. Adrenal function in Angora goats: A comparative study of adrenal steroidogenesis in Angora goats, Boer goats, and Merino sheep. J. Anim. Sci. 2000, 78, 371–379.
[12]  Storbeck, K.; Swart, A.C.; Snyman, M.A.; Swart, P. Two CYP17 genes in the South African Angora goat (Capra hircus)—The identification of three genotypes that differ in copy number and steroidogenic output. FEBS J. 2008, 275, 3934–3943, doi:10.1111/j.1742-4658.2008.06539.x.
[13]  Department of Agriculture, Forestry and Fisheries. Abstract of Agricultural Statistics. 2012. Available online: http://www.nda.agric.za/docs/statsinfo/Ab2012.pdf (accessed on 9 May 2013).
[14]  Cape Wools SA. Annual Report 2008/2009. Available online: http://www.capewools.co.za/index.php?option=com_docman&task=doc_download&gid=5353 (accessed on 20 February 2013).
[15]  Lynch, J.J.; Hinch, G.N.; Adams, D.B. The Behavior of Sheep; CSIRO Publications: Melbourne, Australia, 1992; pp. 4–5, 51, 81–86,182–188.
[16]  Schoeman, S.J.; Cloete, S.W.P.; Olivier, J.J. Returns on investment in sheep and goat breeding in South Africa. Livest. Sci. 2010, 130, 70–82, doi:10.1016/j.livsci.2010.02.012.
[17]  Mason, I.L. A World Dictionary of Livestock Breeds, Types and Varieties, 2nd ed.; Farnham Royal: Buckinghamshire, UK, 1969.
[18]  Olivier, J.J. The South African Merino performance testing. Proc. Assoc. Adv. Anim. Breed. Genet. 1999, 13, 119–124.
[19]  Department of Agriculture, Forestry and Fisheries. Livestock Development Strategy for South Africa. Available online: http://www.nda.agric.za/docs/GenPub/DevStrat2007.pdf (accessed on 20 February 2013).
[20]  Agricultural Research Council. Small Stock Improvement Scheme. Available online: http://www.arc.agric.za/home.asp?pid=2753 (accessed on 10 November 2011).
[21]  Cloete, S.W.P.; Gilmour, A.R.; Olivier, J.J.; Van Wyk, J.B. Genetic and phenotypic trends and parameters in reproduction, greasy fleece weight and live weight in Merino lines divergently selected for multiple rearing ability. Austr. J. Exper. Agr. 2004, 44, 745–754, doi:10.1071/EA02225.
[22]  Cloete, S.W.P.; Scholtz, A.J. Lamb survival in relation to lambing and neonatal behavior in medium wool Merino lines divergently selected for multiple rearing ability. Austr. J. Exper. Agr. 1998, 38, 801–811, doi:10.1071/EA98095.
[23]  Cloete, S.W.P.; Scholtz, A.J.; Ten Hoope, J.M. A note on separation from one or more lambs in Merino lines divergently selected for ewe multiple rearing ability. Appl. Anim. Behav. Sci. 1998, 58, 189–195, doi:10.1016/S0168-1591(97)00098-1.
[24]  Cloete, S.W.P.; Scholtz, A.J.; Taljaard, R. Lambing behavior of Merino ewes from lines subjected to divergent selection for multiple rearing ability from the same base population. S. Afr. J. Anim. Sci. 2002, 32, 57–65.
[25]  Cloete, S.W.P.; Scholtz, A.J.; Cloete, J.J.E.; Van Wyk, J.B. The ability of Merino ewes and lambs to reunite after separation, as affected by divergent selection for ewe multiple rearing capacity. Austr. J. Exper. Agr. 2005, 45, 1131–1137, doi:10.1071/EA02160.
[26]  Cloete, S.W.P.; Olivier, J.J.; Van Wyk, J.B.; Erasmus, G.J.; Schoeman, S.J. Genetic parameters and trends for birth weight, birth coat score and weaning weight in Merino lines divergently selected for ewe multiple rearing ability. S. Afr. J. Anim. Sci. 2003, 33, 248–256.
[27]  Cloete, S.W.P.; Misztal, I.; Olivier, J.J. Genetic parameters and trends for lamb survival and birth weight in a Merino flock divergently selected for multiple rearing ability. J. Anim. Sci. 2009, 87, 2196–2208, doi:10.2527/jas.2008-1065.
[28]  Cloete, S.W.P.; Gilmour, A.R.; Olivier, J.J.; Van Wyk, J.B. Age trends in economically important traits of Merino ewes subjected to 10 years of divergent selection for multiple rearing ability. S. Afr. J. Anim. Sci 2003, 33, 43–51.
[29]  Cloete, S.W.P.; Olivier, J.J. Direct and correlated responses to selection for multiple rearing ability in South African Merinos. Proc. Ann. Congr. S. Afr. Soc. Anim. Sci. 1998, 36, 65–68.
[30]  Cloete, S.W.P.; Olivier, J.J.; Van Wyk, J.B.; Schoeman, S.J.; Erasmus, G.J. Genetic parameters and trends for hogget traits in Merino lines divergently selected for multiple rearing ability. Proc. Assoc. Adv. Anim. Breed. Genet. 2005, 16, 24–27.
[31]  Scholtz, A.J.; Cloete, S.W.P.; Van Wyk, J.B.; Kruger, A.C.M.; Van der Linde, T.C.deK. Influence of divergent selection for reproduction on the occurrence of breech strike in mature Merino ewes. Anim. Prod. Sci. 2010, 50, 203–209, doi:10.1071/AN09123.
[32]  Seddon, H.R. Conditions which predispose sheep to blowfly attack. Agr. Gazette New South Wales 1931, 42, 581–594.
[33]  Seddon, H.R.; Belschner, H.G.; Mulhearn, C.R. Studies on Cutaneous Myiasis of Sheep (Sheep Blowfly Attack); Science Bulletin No. 37; New South Wales Department of Agriculture: Beecroft, Australia, 1931; pp. 3–30.
[34]  Tillyard, R.J.; Seddon, H.R.; Council for Scientific and Industrial Research; Joint Blowfly Committee (Australia). The Sheep Blowfly Problem in Australia; Report No. 1; Council for Scientific and Industrial Research: Melbourne, Australia, 1933.
[35]  Dun, R.B. Skin folds and Merino breeding. 1. The net reproductive rates of flocks selected for and against skin fold. Austr. J. Exper. Agr. Anim. Husbandry 1964, 4, 376–385, doi:10.1071/EA9640376.
[36]  McGuirk, B.J. Skin folds and Merino breeding. 8. Fertility of individual rams in flocks selected for high and low skin fold. Austr. J. Exper. Agr. Anim. Husbandry 1969, 9, 147–150, doi:10.1071/EA9690147.
[37]  Atkins, K.D. Selection for skin folds and fertility. Skin folds as a breeding objective. Proc. Austr. Soc. Anim. Prod. 1980, 13, 174–176.
[38]  Cloete, J.J.E.; Cloete, S.W.P.; Hoffman, L.C. Behavior of Merinos divergently selected for multiple rearing ability in response to external stimuli. Small Ruminant Res. 2005, 60, 227–236, doi:10.1016/j.smallrumres.2004.12.009.
[39]  Hoffman, L.C.; Schmidt, D.; Muller, M.M.; Cloete, J.J.E.; Cloete, S.W.P. Sensory and objective mutton quality characteristics of SA Merino sheep selected for and against reproductive fitness. S. Afr. J. Anim. Sci. 2003, 33, 52–64.
[40]  Van der Walt, D.; Cloete, S.W.P.; Storbeck, K.; Swart, P. The role of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) in the stress coping ability in a divergently selected Merino sheep population. Proc. Assoc. Adv. Anim. Breed. Genet. 2009, 18, 100–103.
[41]  Hough, D.; Storbeck, K.; Cloete, S.W.P.; Swart, P. Improving stress coping ability: Comparison between the CYP17 genotype of Ovis aries and Capra hircus. In Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–6 August 2010.
[42]  Hough, D. Comparison of two CYP17 isoforms: Implications for cortisol production in the South African Merino. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012.
[43]  Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: New York, NY, USA, 1996.
[44]  Mackay, T.F.C. The nature of quantitative genetic variation revisited: Lessons from Drosophila bristles. BioEssays 1996, 18, 113–121, doi:10.1002/bies.950180207.
[45]  Mackay, T.F.C. Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2001, 2, 11–20, doi:10.1038/35047544.
[46]  Camp, N.J.; Cox, A. Methods in Molecular Biology. In Quantitative Trait Loci: Methods and Protocols; Humana Press, Inc.: Totowa, NJ, USA, 2002; Volume 195.
[47]  Wu, R.; Ma, C.; Casella, G. Statistical Genetics of Quantitative Traits; Springer Science and Business Media: New York, NY, USA, 2007.
[48]  DeRijk, R.H. Single nucleotide polymorphisms related to HPA axis activity. Neuroimmunomodulation 2009, 16, 340–352.
[49]  Bartels, M.; Berg, M.V.D.; Sluyter, F.; Boomsma, D.I.; Geus, E.J.D. Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology 2003, 28, 121–137, doi:10.1016/S0306-4530(02)00003-3.
[50]  Federenko, I.S.; Nagamine, M.; Hellhammer, D.H.; Wadhwa, P.D.; Wust, S. The heritability of hypothalamus pituitary adrenal axis responses to psychosocial stress is context dependent. J. Clin. Endocrinol. Metabol. 2004, 89, 6244–6250, doi:10.1210/jc.2004-0981.
[51]  Guimont, F.S.; Wynne-Edwards, K.E. Individual variation in cortisol responses to acute “on-back” restraint in an outbred hamster. Hormone. Behav. 2006, 50, 252–260, doi:10.1016/j.yhbeh.2006.03.008.
[52]  You, Q.; Karrow, N.A.; Cao, H.; Rodriguez, A.; Mallard, B.A.; Boermans, H.J. Variation in the ovine cortisol response to systemic bacterial endotoxin challenge is predominantly determined by signaling within the hypothalamic-pituitary-adrenal axis. Toxicol. Appl. Pharmacol. 2008, 230, 1–8, doi:10.1016/j.taap.2008.01.033.
[53]  DeRijk, R.; Kloet, E.D. Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine 2005, 28, 263–270, doi:10.1385/ENDO:28:3:263.
[54]  Wüst, S.; Rossum, E.F.C.V.; Federenko, I.S.; Koper, J.W.; Kumsta, R.; Hellhammer, D.H. Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. J. Clin. Endocrinol. Metabol. 2004, 89, 565–573, doi:10.1210/jc.2003-031148.
[55]  Xu, D.; Buehner, A.; Xu, J.; Lambert, T.; Nekl, C.; Nielsen, M.K.; Zhou, Y. A polymorphic glucocorticoid receptor in a mouse population may explain inherited altered stress response and increased anxiety-type behaviors. FASEB J. 2006, 20, 2414–2416, doi:10.1096/fj.06-5926fje.
[56]  Hough, D.; Cloete, S.W.P.; Storbeck, K.; Swart, A.C.; Swart, P. Cortisol production in sheep is influenced by the functional expression of two cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) isoforms. J. Anim. Sci. 2013, 91, 1193–1206, doi:10.2527/jas.2012-5800.
[57]  Meaney, M.J.; Szyf, M. Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dial. Clin. Neurosci. 2005, 7, 103–123.
[58]  Weaver, I.C.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nat. Neurosci. 2004, 7, 847–854, doi:10.1038/nn1276.
[59]  SanCristobal-Gaudy, M.; Bodin, L.; Elsen, J.M.; Chevalet, C. Genetic components of litter size variability in sheep. Genet. Sel. Evol. 2001, 33, 249–271, doi:10.1186/1297-9686-33-3-249.
[60]  Foury, A.; Geverink, N.A.; Gil, M.; Gispert, M.; Hortos, M.; Font i Furnols, M.; Carrion, D.; Blott, S.C.; Plastow, G.S.; Mormède, P. Stress neuroendocrine profiles in five pig breeding lines and the relationship with carcass composition. Animal 2007, 1, 973–982, doi:10.1017/S1751731107000249.
[61]  Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkivist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; Van Reenen, C.G.; Richard, S.; Veissier, I. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339, doi:10.1016/j.physbeh.2006.12.003.
[62]  Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 1946, 6, 117–230, doi:10.1210/jcem-6-2-117.
[63]  Ewbank, R. The behavioral needs of farm and laboratory animals. In Animal Experimentation: Improvements and Alternatives; Marsh, N., Haywood, S., Eds.; FRAME: Nottingham, UK, 1985; pp. 31–35.
[64]  Dickens, M.J.; Delehanty, D.J.; Romero, L.M. Stress: An inevitable component of animal translocation. Biol. Conserv. 2010, 143, 1329–1341, doi:10.1016/j.biocon.2010.02.032.
[65]  Wingfield, J.C.; Maney, D.L.; Breuner, C.W.; Jacobs, J.D.; Lynn, S.; Ramenofsky, M.; Richardson, R.D. Ecological bases of hormone-behavior interactions: The emergency life history stage. Am. Zool. 1998, 38, 191–206.
[66]  Nazifi, S.; Saeb, M.; Rowghani, E.; Kaveh, K. The influences of thermal stress on serum biochemical parameters of Iranian fat-tailed sheep and their correlation with triiodothyronine (T3), thyroxine (T4) and cortisol concentrations. Comp. Clin. Pathol. 2003, 12, 135–139, doi:10.1007/s00580-003-0487-x.
[67]  Michel, V.; Peinnequin, A.; Alonso, A.; Buguet, A.; Cespuglio, R.; Canini, F. Decreased heat tolerance is associated with hypothalamic-pituitary-adrenocortical axis impairment. Neuroscience 2007, 147, 522–531, doi:10.1016/j.neuroscience.2007.04.035.
[68]  Knap, P.W. Robustness. In Resource Allocation Theory Applied to Farm Animal Production; Rauw, W.M., Ed.; CABI Publishing: Wallingford, UK, 2009; pp. 288–301.
[69]  Wingfield, J.C.; Romero, L.M. Adrenocortical responses to stress and their modulation in free-living vertebrates. In Handbook of Physiology, Section 7: The Endocrine System; McEwen, B.S., Goodman, H.M., Eds.; Oxford University Press: New York, NY, USA, 2001; Volume IV, pp. 211–234.
[70]  Spraker, T.R.; Hibler, C.P.; Schoonveld, G.G.; Adney, W.S. Pathologic changes and microorganisms found in Bighorn sheep during a stress-related die-off. J. Wildl. Dis. 1984, 20, 319–327.
[71]  Kilgour, R. Sheep behavior: Its importance in farming systems, handling, transport and pre-slaughter treatment. In Proceedings of Sheep Assembly and Transport Workshop: A Workshop to Study the Supply, Holding and Transport of Sheep for Abattoir Slaughter or Live Transport, Perth, Australia, October 1976; pp. 64–84.
[72]  Degabrielle, R.; Fell, L.R. Changes in behavior, cortisol and lymphocyte types during isolation and group confinement of sheep. Immunol. Cell Biol. 2001, 79, 583–589, doi:10.1046/j.1440-1711.2001.01040.x.
[73]  Da Costa, A.P.; Leigh, A.E.; Man, M.; Kendrick, K.M. Face pictures reduce behavioral, autonomic, endocrine and neural indices of stress and fear in sheep. Proc. Roy. Soc. Lond. B 2004, 271, 2077–2084, doi:10.1098/rspb.2004.2831.
[74]  Grandin, T. Assessment of stress during handling and transport. J. Anim. Sci. 1997, 75, 249–257.
[75]  Hargreaves, A.L.; Hutson, G.D. The stress response in sheep during routine handling procedures. Appl. Anim. Behav. Sci. 1990, 26, 83–90.
[76]  Alexander, G. Constraints to lambs’ survival. In Reproduction in Sheep; Lindsay, D.R., Pearce, D.T., Eds.; Australian Academy of Science and the Australian Wool Corporation: Canberra, Australia, 1984; pp. 199–209.
[77]  Murphy, P.M.; Purvis, I.W.; Lindsay, D.R.; LeNeindre, P.; Orgeur, P.; Poindron, P. Measures of temperament are highly repeatable in Merino sheep and some are related to maternal behavior. Proc. Austr. Soc. Anim. Prod. 1994, 20, 247–250.
[78]  Murphy, P.M. Maternal behavior and rearing ability of Merino ewes can be improved by strategic feed supplementation during late pregnancy and selection for calm temperament. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 1999.
[79]  Pryce, C.R.; Abbott, A.H.; Hodges, J.K.; Martin, R.D. Maternal behavior is related to prepartum urinary estradiol levels in the red-bellied tamarin monkeys. Physiol. Behav. 1988, 44, 717–726, doi:10.1016/0031-9384(88)90052-2.
[80]  Dwyer, C.M.; Gilbert, C.L.; Lawrence, A.B. Prepartum plasma estradiol and postpartum cortisol, but not oxytocin, are associated with interindividual and breed differences in the expression of maternal behavior in sheep. Hormone. Behav. 2004, 46, 529–543, doi:10.1016/j.yhbeh.2004.05.011.
[81]  Bickell, S.; Nowak, R.; Poindron, P.; Chadwick, A.; Ferguson, D.; Blache, D. Challenge by a novel object does not impair the capacity of ewes and lambs selected for a nervous temperament to display early preference for each other. Anim. Prod. Sci. 2011, 51, 575–581, doi:10.1071/AN11009.
[82]  Kilgour, R.J.; Szantar-Coddington, M.R. Arena behavior of ewes selected for superior mothering ability differs from that of unselected ewes. Anim. Reprod. Sci. 1995, 37, 133–141, doi:10.1016/0378-4320(94)01332-G.
[83]  Rivier, C.; Rivest, S. Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: Peripheral and central mechanisms. Biol. Reprod. 1991, 45, 523–532, doi:10.1095/biolreprod45.4.523.
[84]  Manteuffel, G. Central nervous regulation of the hypothalamic-pituitary-adrenal axis and its impact on fertility, immunity, metabolism and animal welfare, a review. Archiv fur Tierzucht 2002, 45, 575–595.
[85]  Cook, N.J. Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can. J. Anim. Sci. 2011, 92, 227–259, doi:10.4141/cjas2012-045.
[86]  Mormede, P.; Foury, A.; Barat, P.; Corcuff, J.B.; Terenina, E.; Marissal-Arvy, N.; Moisan, M.P. Molecular genetics of hypothalamic-pituitary-adrenal axis activity and function. Ann. New York Acad. Sci. 2011, 1220, 127–136, doi:10.1111/j.1749-6632.2010.05902.x.
[87]  Weitzman, E.D.; Fukushima, D.; Nogeire, C.; Roffwarg, H.; Gallagher, T.F.; Hellman, L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J. Clin. Endocrinol. Metabol. 1971, 33, 14–22, doi:10.1210/jcem-33-1-14.
[88]  Whitnall, M.H. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Progr. Neurobiol. 1993, 40, 573–629, doi:10.1016/0301-0082(93)90035-Q.
[89]  Aguilera, G. Corticotropin releasing hormone, receptor regulation and the stress response. Trends Endocrinol. Metabol. 1998, 9, 329–336, doi:10.1016/S1043-2760(98)00079-4.
[90]  Lightman, S.L. How does the hypothalamus respond to stress? Neurosciences 1994, 6, 215–219.
[91]  Bonaz, B.; Rivest, S. Effect of chronic stress on CRF neuronal activity and expression of its type 1 receptor in the rat brain. Am. J. Physiol. 1998, 44, 1438–1449.
[92]  Blache, D.; Bickell, S.L. Temperament and reproductive biology: Emotional reactivity and reproduction in sheep. Rev. Bras. Zootecn. 2010, 39, 401–408, doi:10.1590/S1516-35982010001300044.
[93]  Keller, M.; Meurisse, M.; Levy, F. Mapping the neural substrates involved in maternal responsiveness and lamb olfactory memory in parturient ewes using Fos imaging. Behav. Neurosci. 2004, 118, 1271–1284.
[94]  Novak, R.; Keller, M.; Lévy, F. Mother-young relationships in sheep: A model for a multidisciplinary approach of the study of attachment in mammals. J. Neuroendocrinol. 2011, 23, 1042–1053, doi:10.1111/j.1365-2826.2011.02205.x.
[95]  Vander, A.; Sherman, J.; Luciano, D. Human Physiology, the Mechanisms of Body Function, 9th ed.; McGraw-Hill Companies Inc.: New York, NY, USA, 2004.
[96]  Von Borell, E.; Dobson, H.; Prunier, A. Stress, behavior and reproductive performance in female cattle and pigs. Hormone. Behav. 2007, 52, 130–138, doi:10.1016/j.yhbeh.2007.03.014.
[97]  Dunn, A.F.; Berridge, C.W. Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety or stress responses? Brain Res. Rev. 1990, 15, 71–100, doi:10.1016/0165-0173(90)90012-D.
[98]  Chen, F.M.; Bilezikjian, L.M.; Perrin, M.H.; Rivier, J.; Vale, W. Corticotropin releasing factor receptor-mediated stimulation of adenylate cyclase activity in the rat brain. Brain Res. 1986, 381, 49–57, doi:10.1016/0006-8993(86)90688-8.
[99]  Familari, M.; Smith, A.I.; Smith, R.; Funder, J.W. Arginine vasopressin is a much more potent stimulus to ACTH release from ovine anterior pituitary cells than ovine corticotrophin-releasing factor: In vitro studies. Neuroendocrinology 1989, 50, 152–157, doi:10.1159/000125214.
[100]  Owens, M.J.; Nemeroff, C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 1992, 43, 425–436.
[101]  Liu, J.; Robinson, P.J.; Funder, J.W.; Engler, D. A comparative study of the role of adenylate cyclase in the release of adrenocorticotropin from the ovine and rat anterior pituitary. Mol. Cell. Endocrinol. 1994, 101, 173–181, doi:10.1016/0303-7207(94)90232-1.
[102]  Mastorakos, G.; Weber, J.S.; Magiakou, M.A.; Gunn, H.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis evaluation and stimulation of systemic vasopressin secretion by recombinant interleukin 6 in humans: Potential implications for the syndrome of inappropriate vasopressin secretion. J. Clin. Endocrinol. Metabol. 1994, 79, 934–939, doi:10.1210/jc.79.4.934.
[103]  Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Ann. Rev. Physiol. 2005, 67, 259–284, doi:10.1146/annurev.physiol.67.040403.120816.
[104]  Stevens, A.; Begum, G.; Cook, A.; Connor, K.; Rumball, C.; Oliver, M.; Challis, J.; Bloomfield, F.; White, A. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 2010, 151, 3652–3664, doi:10.1210/en.2010-0094.
[105]  McMillen, I.C.; Phillips, I.D.; Ross, J.T.; Robinson, J.S.; Owens, J.A. Chronic stress: The key to parturition? Reprod. Fert. Develop. 1995, 7, 499–507, doi:10.1071/RD9950499.
[106]  Schwartz, J.; Ash, P.; Ford, V.; Raff, H.; Crosby, S.; White, A. Secretion of adrenocorticotrophin (ACTH) and ACTH precursors in ovine anterior pituitary cells: Actions of corticotrophinreleasing hormone, arginine vasopressin and glucocorticoids. J. Endocrinol. 1994, 140, 189–195, doi:10.1677/joe.0.1400189.
[107]  Challis, G., Jr.; Brooks, A.N. Maturation and activation of hypothalamic-pituitary-adrenal function in foetal sheep. Endocrine Rev. 1989, 10, 182–204, doi:10.1210/edrv-10-2-182.
[108]  Miller, W.L.; Auchus, R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Res. 2011, 32, 81–151, doi:10.1210/er.2010-0013.
[109]  Gwynne, J.T.; Strauss, J.F, 3rd. The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocrine Rev. 1982, 3, 299–329, doi:10.1210/edrv-3-3-299.
[110]  Jefcoate, C. High-flux mitochondrial cholesterol trafficking, a specialized function of the adrenal cortex. J. Clin. Invest. 2002, 110, 881–890.
[111]  Brown, M.S.; Kovanen, P.T.; Goldstein, J.L. Receptor mediated uptake of lipoprotein-cholesterol and its utilization for steroid synthesis in the adrenal cortex. Recent Prog. Hormone Res. 1979, 35, 215–257.
[112]  Liu, J.; Heikkila, P.; Meng, Q.H.; Kahri, A.I.; Tikkanen, M.J.; Voutilainen, R. Expression of low and high density lipoprotein receptor genes in human adrenals. Eur. J. Endocrinol. 2000, 142, 677–682, doi:10.1530/eje.0.1420677.
[113]  Mason, J.I.; Rainey, W.E. Steroidogenesis in the human foetal adrenal: A role for cholesterol synthesized de novo. J. Clin. Endocrinol. Metabol. 1987, 64, 140–147, doi:10.1210/jcem-64-1-140.
[114]  Kraemer, F.B. Adrenal cholesterol utilization. Mol. Cell. Endocrinol. 2007, 265, 42–45, doi:10.1016/j.mce.2006.12.001.
[115]  Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109, 1125–1131.
[116]  Juengel, J.L.; Meberg, B.M.; Turzillo, A.M.; Nett, T.M.; Niswender, G.D. Hormonal regulation of messenger ribonucleic acid encoding steroidogenic acute regulatory protein in ovine corpora lutea. Endocrinology 1995, 136, 5423–5429, doi:10.1210/en.136.12.5423.
[117]  Hogg, K.; McNeilly, A.S.; Duncan, W.C. Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine foetal ovary. Endocrinology 2011, 152, 2048–2059, doi:10.1210/en.2010-1219.
[118]  Storbeck, K.; Kolar, N.W.; Stander, M; Swart, A.C.; Prevoo, D.; Swart, P. The development of an ultra performance liquid chromatography-coupled atmospheric pressure chemical ionization mass spectrometry assay for seven adrenal steroids. Anal. Biochem. 2008, 37, 11–20.
[119]  Boon, W.C.; Roche, P.J.; Butkus, A.; McDougall, J.G.; Jeyaseelan, K.; Coghlan, P. Functional and expression analysis of ovine steroid 11β-hydroxylase (cytochrome P45011β). Endocrine Res. 1997, 23, 325–347, doi:10.1080/07435809709031861.
[120]  Imai, T.; Yamazaki, T.; Kominami, S. Kinetic studies on bovine cytochrome P45011B catalyzing successive reactions from 11-deoxycorticosterone to aldosterone. Biochemistry 1998, 37, 8097–8104, doi:10.1021/bi9802768.
[121]  Lisurek, M.; Bernhardt, R. Modulation of aldosterone and cortisol synthesis on the molecular level. Mol. Cell. Endocrinol. 2004, 215, 149–159, doi:10.1016/j.mce.2003.11.008.
[122]  Ehrhart-Bornstein, M.; Hinson, J.P.; Bornstein, S.R.; Scherbaum, W.A.; Vinson, G.P. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocrine Rev. 1998, 19, 101–143, doi:10.1210/er.19.2.101.
[123]  Hinson, J.P.; Kapas, S. The role of endothelial cell products in the regulation of adrenocortical function: Actions of endothelin, nitric oxide, adrenomedullin and PAMP. Hormone Metab. Res. 1998, 30, 334–340, doi:10.1055/s-2007-978894.
[124]  Young, B.; Lowe, J.S.; Stevens, A.; Heath, J.W. Organ systems. In Wheather's Functional Histology: A Text and Colour Atlas, 5th; Ozols, I., Whitehouse, A., Eds.; Churchill Livingstone Elsevier Ltd.: London, UK, 2006; pp. 331–341.
[125]  Kempna, P.; Hirch, A.; Hofer, G.; Mullis, P.E.; Flück, C.E. Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R Cells. Endocrinology 2010, 151, 3686–3696, doi:10.1210/en.2010-0093.
[126]  Rainey, W.E.; Shay, J.W.; Mason, J.I. The effect of cytochalasin D on steroid production and stress fiber organization in cultured bovine adrenocortical cells. Mol. Cell. Endocrinol. 1984, 35, 189–197, doi:10.1016/0303-7207(84)90016-9.
[127]  Voorhees, H.; Aschenbrenner, J.; Carnes, J.; Mrotek, J. Rounding and steroidogenesis of enzyme- and ACTH-treated Y-1 mouse adrenal tumor cells. Cell Biol. Int. Rep. 1984, 8, 483–497, doi:10.1016/0309-1651(84)90169-3.
[128]  Rainey, W.E.; Kramer, R.E.; Mason, J.I.; Shay, J.W. The effects of taxol, a microtubule-stabilizing drug, on steroidogenic cells. J. Cell. Physiol. 1985, 123, 17–24, doi:10.1002/jcp.1041230104.
[129]  Sackett, D.L.; Wolff, J. Cyclic AMP-independent stimulation of steroidogenesis in Y-1 adrenal tumor cells by antimitotic agents. Biochim. Biophys. Acta 1986, 888, 163–170, doi:10.1016/0167-4889(86)90017-0.
[130]  Denkova, R.; Ivanov, I.; Dimitrova, M. Microtubules and regulation of granulosa cell steroidogenesis by porcine granulosa cell conditioned medium. Endocrine Regulat. 1992, 26, 195–199.
[131]  Shiver, T.M.; Sackett, D.L.; Knipling, L.; Wolff, J. Intermediate filaments and steroidogenesis in adrenal Y-1 cells: Acrylamide stimulation of steroid production. Endocrinology 1992, 131, 201–207, doi:10.1210/en.131.1.201.
[132]  Han, J.D.; Rubin, C.S. Regulation of cytoskeleton organization and paxillin dephosphorylation by cAMP. J. Biol. Chem. 1996, 271, 29211–29215.
[133]  Hall, P.F.; Almahbobi, G. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis. Microsc. Res. Tech. 1997, 36, 463–479, doi:10.1002/(SICI)1097-0029(19970315)36:6<463::AID-JEMT4>3.0.CO;2-J.
[134]  Lee, L.J.; Chen, J.S.; Ko, T.L.; Wang, S.M. Mechanism of colchicineinduced steroidogenesis in rat adrenocortical cells. J. Cell. Biochem. 2001, 81, 162–171.
[135]  Whitehouse, B.J.; Gyles, S.L.; Squires, P.E.; Sayed, S.B.; Burnes, C.J.; Persaud, S.J.; Jones, P.M. Interdependence of steroidogenesis and shape changes in Y1 adrenocortical cells: Studies with inhibitors of phosphoprotein phosphatases. J. Endocrinol. 2002, 172, 583–593, doi:10.1677/joe.0.1720583.
[136]  Nan, X.; Potma, E.O.; Xie, X.S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-strokes Raman scattering microscopy. Biophys. J. 2006, 91, 728–735, doi:10.1529/biophysj.105.074534.
[137]  Sewer, M.B.; Li, D. Regulation of steroid hormone biosynthesis by the cytoskeleton. Lipids 2008, 43, 1109–1115, doi:10.1007/s11745-008-3221-2.
[138]  Li, D.; Sewer, M.B. RhoA and DIAPH1 mediate adrenocorticotropin-stimulated cortisol biosynthesis by regulating mitochondrial trafficking. Endocrinology 2010, 151, 4313–4323, doi:10.1210/en.2010-0044.
[139]  Payne, A.H.; Hales, D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Rev. 2004, 25, 947–970, doi:10.1210/er.2003-0030.
[140]  Sirianni, R.; Rehman, K.S.; Carr, B.R.; Parker, C.R., Jr.; Rainey, W.E. Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human foetal adrenal cells. J. Clin. Endocrinol. Metab. 2005, 90, 279–285.
[141]  Xing, Y.; Edwards, M.A.; Ahlem, C.; Kennedy, M.; Cohen, A.; Gomez-Sanchez, C.E.; Rainey, W.E. The effects of ACTH on steroid metabolomic profiles in human adrenal cells. J. Endocrinol. 2011, 209, 327–335, doi:10.1530/JOE-10-0493.
[142]  Phillips, I.D.; Ross, J.T.; Young, I.R.; McMillen, I.C. Adrenal steroidogenic enzyme expression in the hypothalamopituitary disconnected fetal sheep. Proc. Austr. Soc. Med. Res. 1994, 33, 150.
[143]  Colomer, C.; Desarménien, M.G.; Guérineau, N.C. Revisiting the stimulus-secretion coupling in the adrenal medulla: Role of gap junction-mediated intercellular communication. Mol. Neurobiol. 2009, 40, 87–100, doi:10.1007/s12035-009-8073-0.
[144]  Turnbull, A.V.; Prehar, S.; Kennedy, A.R.; Little, R.A.; Hopkins, S.J. Interleukin-6 is an afferent signal to the hypothalamo-pituitary-adrenal axis during local inflammation in mice. Endocrinology 2003, 144, 1894–1906, doi:10.1210/en.2002-220964.
[145]  Karrow, N.A. Activation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system during inflammation and altered programming of the neuroendocrine-immune axis during fetal and neonatal development: Lessons learned from the model inflammagen, lipopolysaccharide. Brain Behav. Immun. 2006, 20, 144–158, doi:10.1016/j.bbi.2005.05.003.
[146]  Muller-Steinhardt, M.; Ebel, B.; Hartel, C. The impact of interleukin-6 promoter-597/-572/-174genotype on interleukin-6 production after lipopolysaccharide stimulation. Clin. Exper. Immunol. 2007, 147, 339–345.
[147]  Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1362, doi:10.1056/NEJM199505183322008.
[148]  Campbell, L.E.; Yang, M.Y.K. Ovine 11β-hydroxysteroid dehydrogenase type 2 gene predicts a protein distinct from that deduced by the cloned kidney cDNA at the C-terminus. Mol. Cell. Endocrinol. 1996, 119, 113–118, doi:10.1016/0303-7207(96)03775-6.
[149]  Simmons, R.M.; Satterfield, M.C.; Welsh, T.H., Jr.; Brazer, F.W.; Spencer, T.E. HSD11B1, HSD11B2, PTGS2, and NR3C1 expression in the peri-implantation ovine uterus: Effects of pregnancy, progesterone and interferon tau. Biol. Reprod. 2010, 82, 35–43, doi:10.1095/biolreprod.109.079608.
[150]  Quinkler, M.; Stewart, P.M. Hypertension and the cortisol-cortisone shuttle. J. Clin. Endocrinol. Metab. 2003, 88, 2384–2392, doi:10.1210/jc.2003-030138.
[151]  Smith, C.L.; Hammond, G.L. Hormonal regulation of corticosteroid-binding globulin biosynthesis in the male rat. Endocrinology 1992, 130, 2245–2251, doi:10.1210/en.130.4.2245.
[152]  Mihrshahi, R.; Lewis, J.G.; Ali, S.O. Hormonal effects on the secretion and glycoform profile of corticosteroid-binding globulin. J. Steroid Biochem. Mol. Biol. 2006, 101, 275–285, doi:10.1016/j.jsbmb.2006.06.031.
[153]  Duma, D.; Jewell, C.M.; Cidlowski, J.A. Multiple glucocorticoid receptor isoforms and mechanisms of post-translational modification. J. Steroid Biochem. Mol. Biol. 2006, 102, 11–21, doi:10.1016/j.jsbmb.2006.09.009.
[154]  Hantzis, V.; Albiston, A.; Matsacos, D.; Wintour, E.M.; Peers, A.; Koukoulas, I.; Myles, K.; Moritz, K.; Dodic, M. Effect of early glucocorticoid treatment on MR and GR in late gestation ovine kidney. Kidney Int. 2002, 61, 405–413, doi:10.1046/j.1523-1755.2002.00157.x.
[155]  Oakley, R.H.; Webster, J.C.; Sar, M.; Parker, C.R., Jr.; Cidlowski, J.A. Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology 1997, 138, 5028–5038, doi:10.1210/en.138.11.5028.
[156]  Beato, M.; Truss, M.; Chavez, S. Control of transcription by steroid hormones. Ann. N. Y. Acad. Sci. 1996, 784, 93–123, doi:10.1111/j.1749-6632.1996.tb16231.x.
[157]  Olefsky, J.M. Nuclear receptor minireview series. J. Biol. Chem. 2001, 276, 36836–36864, doi:10.1074/jbc.R100047200.
[158]  Newton, R. Molecular mechanisms of glucocorticoid action: What is important? Thorax 2000, 55, 603–613, doi:10.1136/thorax.55.7.603.
[159]  Barouki, R.; Chobert, M.N.; Billon, M.C.; Finidori, J.; Tsapis, R.; Hanoune, J. Glucocorticoid hormones increase the activity of gamma-glutamyltransferase in a highly differentiated hepatoma cell line. Biochim. Biophys. Acta 1982, 721, 11–21, doi:10.1016/0167-4889(82)90018-0.
[160]  Schmid, E.; Schmid, W.; Jantzen, M.; Mayer, D.; Jastorff, B.; Schutz, G. Transcription activation of the tyrosine aminotransferase gene by glucocorticoids and cAMP in primary hepatocytes. Eur. J. Biochem. 1987, 165, 499–506, doi:10.1111/j.1432-1033.1987.tb11467.x.
[161]  Orth, D.N.; Kovacs, W.J.; DeBold, C.R. The adrenal cortex. In Textbook of Endocrinology; Wilson, J.D., Foster, D.W., Eds.; WB Saunders Company: Philadelphia, PA, USA, 1992; pp. 489–619.
[162]  DuBois, D.C.; Xu, Z.X.; McKay, L.; Almon, R.R.; Pyszcznski, N.; Jusko, W.J. Differential dynamics of receptor down-regulation and tyrosine aminotransferase induction following glucocorticoid treatment. J. Steroid Biochem. Mol. Biol. 1995, 54, 237–243, doi:10.1016/0960-0760(95)00139-Q.
[163]  Stalmans, W.; Laloux, M. Glucocorticoids and hepatic glycogen metabolism. In Glucocorticoid hormone Action; Baxter, J.D., Rousseau, G.G., Eds.; Springer-Verlag: New York, NY, USA, 1979; pp. 518–533.
[164]  Kuchel, O. Stress and catecholamines. In Stress Revisited. I. Neuroendocrinology of Stress; Jasmin, G., Cantin, M., Eds.; Karger: New York, NY, USA, 1991; pp. 80–103.
[165]  Ferguson, D.M.; Warner, R.D. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci. 2008, 80, 12–19.
[166]  Rooyackers, O.E.; Nair, K.S. Hormonal regulation of human muscle protein metabolism. Ann. Rev. Nutr. 1997, 17, 457–485, doi:10.1146/annurev.nutr.17.1.457.
[167]  Jacob, R.H.; Pethick, D.W.; Chapman, H.M. Muscle glycogen concentrations in commercial consignments of Australian lamb measured on farm and post-slaughter after three different lairage periods. Austr. J. Exper. Agr. 2005, 45, 543–552, doi:10.1071/EA03216.
[168]  Pemberton, P.A.; Stein, P.E.; Pepys, M.B.; Potter, J.M.; Carrell, R.W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 1988, 336, 257–258, doi:10.1038/336257a0.
[169]  Rescher, U.; Goebeler, V.; Wilbers, A.; Gerke, V. Proteolytic cleavage of annexin 1 by human leukocyte elastase. Biochim. Biophys. Acta 2006, 1763, 1320–1324, doi:10.1016/j.bbamcr.2006.08.041.
[170]  Kaliner, M. Mechanisms of glucocorticosteroid action in bronchial asthma. J. Allerg. Clin. Immunol. 1985, 76, 321–329, doi:10.1016/0091-6749(85)90648-7.
[171]  Reid, S.D.; Perry, S.F. The effects and physiological consequences of raised levels of cortisol on rainbow trout (Oncorhynchus mykiss) erythrocyte beta-adrenoreceptors. J. Exper. Biol. 1991, 158, 217–240.
[172]  Kita, H.; Jorgensen, R.K.; Reed, C.E.; Dunnette, S.L.; Swanson, M.C.; Bartemes, K.R.; Squillace, D.; Blomgren, J.; Bachman, K.; Gleich, G.L. Mechanism of topical glucocorticoid treatment of hay fever: IL-5 and eosinophil activation during natural allergen exposure are suppressed, but IL-4, IL-6, and IgE antibody production are unaffected. J. Allerg. Clin. Immunol. 2000, 106, 521–529, doi:10.1067/mai.2000.108430.
[173]  Angeli, A.; Masera, R.G.; Sartori, M.L.; Fortunati, N.; Racca, S.; Dovio, A.; Staurenghi, A.; Frairia, R. Modulation by cytokines of glucocorticoid action. Ann. N. Y. Acad. Sci. 1999, 876, 210–220, doi:10.1111/j.1749-6632.1999.tb07641.x.
[174]  Uhlar, C.M.; Whitehead, A.S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem. 1999, 265, 501–523, doi:10.1046/j.1432-1327.1999.00657.x.
[175]  Moisan, M. Genotype-phenotype associations in understanding the role of corticosteroid-binding globulin in health and disease animal models. Mol. Cell. Endocrinol. 2010, 316, 35–41, doi:10.1016/j.mce.2009.07.017.
[176]  MacFarlane, M.S.; Breen, K.M.; Sakurai, H.; Adams, B.M.; Adams, T.E. Effect of duration of infusion of stress-like concentrations of cortisol on follicular development and the preovulatory surge of LH in sheep. Anim. Reprod. Sci. 2000, 63, 167–175, doi:10.1016/S0378-4320(00)00179-2.
[177]  Breen, K.M.; Billings, H.J.; Wagenmaker, E.R.; Wessinger, E.W.; Karsch, F.J. Endocrine basis for disruptive effects of cortisol on preovulatory events. Endocrinology 2005, 146, 2107–2115, doi:10.1210/en.2004-1457.
[178]  Whittle, W.L.; Patel, F.A.; Alfaidy, N.; Holloway, A.C.; Fraser, M.; Gyomorey, S.; Lye, S.J.; Gibb, W.; Challis, J.R.G. Glucocorticoid regulation of human and ovine parturition: The relationship between foetal hypothalamic-pituitary-adrenal axis activation and intrauterine prostaglandin production. Biol. Reprod. 2001, 64, 1019–1034.
[179]  Hough, D.; Swart, P.; Cloete, S.W.P. Comparison of peripartum steroid profiles and the relation to lamb survival in South African Merinos divergently selected for multiple rearing abilityUnpublished data. 2013.
[180]  Matthews, S.G. Dynamic changes in glucocorticoid and mineralocorticoid receptor mRNA in the developing guinea pig brain. Develop. Brain Res. 1998, 107, 123–132, doi:10.1016/S0165-3806(98)00008-X.
[181]  Meyer, U.; Kruhoffer, M.; Flugge, G.; Fuchs, E. Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Mol. Brain Res. 1998, 55, 243–253, doi:10.1016/S0169-328X(98)00004-7.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133