全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Influence of Sterilized Human Fecal Extract on the Sensitivity of Salmonella enterica ATCC 13076 and Listeria monocytogenes ATCC 15313 to Enrofloxacin

DOI: 10.3390/antibiotics2040485

Keywords: fluoroquinolone, enrofloxacin, sterilized human fecal extract, Salmonella, Listeria

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is much debate on whether continuous exposure of commensal bacteria and potential pathogens residing in the human intestinal tract to low levels of antimicrobial agents from treated food animals pose a public health concern. To investigate antimicrobial effects on bacteria under colonic conditions, we studied resistance development in Salmonella enterica and Listeria monocytogenes exposed to enrofloxacin in the presence of fecal extract. The bacteria were incubated at 37 °C in Mueller-Hinton broth, with and without 0.01~0.5 μg/mL enrofloxacin, in the presence and absence of sucrose, and with 1% or 2.5% filter-sterilized fecal extract, for three passages. In the second and third passages, only the bacteria incubated in the media containing sterilized fecal extract grew in 0.5 μg/mL of enrofloxacin. Fecal extract (1% and 2.5%) decreased the sensitivity of S. enterica to enrofloxacin in the medium containing the efflux pump inhibitors reserpine and carbonyl cyanide- m-chlorophenylhydrazone (CCCP) and affected the accumulation of ethidium bromide (EtBr) in this bacterium . Enrofloxacin (0.06 μg/mL) and fecal extract altered the composition of fatty acids in S. enterica and L. monocytogenes. We conclude that fecal extract decreased the susceptibilities of S. enterica and L. monocytogenes to concentrations of enrofloxacin higher than the MIC and resulted in rapid resistance selection.

References

[1]  Croswell, A.; Amir, E.; Teggatz, P.; Barman, M.; Salzman, N.H. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun. 2009, 77, 2741–2753, doi:10.1128/IAI.00006-09.
[2]  Costongs, G.M.P.J.; Bos, L.P.; Engels, L.G.J.B.; Janson, P.C.W. A new method for chemical-analysis of feces. Clin. Chim. Acta 1985, 150, 197–203, doi:10.1016/0009-8981(85)90244-X.
[3]  Wlodarska, M.; Willing, B.; Keeney, K.M.; Menendez, A.; Bergstrom, K.S.; Gill, N.; Russell, S.L.; Vallance, B.A.; Finlay, B.B. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011, 79, 1536–1545, doi:10.1128/IAI.01104-10.
[4]  Mitchell, J.M.; Griffiths, M.W.; McEwen, S.A.; McNab, W.B.; Yee, A.J. Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. J. Food Prot. 1998, 61, 742–756.
[5]  Cerniglia, C.E.; Kotarski, S. Evaluation of veterinary drug residues in food for their potential to affect human intestinal microflora. Regul. Toxicol. Pharmacol. 1999, 29, 238–261, doi:10.1006/rtph.1999.1300.
[6]  Cerniglia, C.E.; Kotarski, S. Approaches in the safety evaluations of veterinary antimicrobial agents in food to determine the effects on the human intestinal microflora. J. Vet. Pharmacol. Ther. 2005, 28, 3–20, doi:10.1111/j.1365-2885.2004.00595.x.
[7]  Love, D.C.; Halden, R.U.; Davis, M.F.; Nachman, K.E. Feather meal: A previously unrecognized route for reentry into the food supply of multiple pharmaceuticals and personal care products (PPCPs). Environ. Sci. Technol. 2012, 46, 3795–3802, doi:10.1021/es203970e.
[8]  San Martin, B.; Cornejo, J.; Iraguen, D.; Hidalgo, H.; Anadon, A. Depletion study of enrofloxacin and its metabolite ciprofloxacin in edible tissues and feathers of white Leghorn hens by liquid chromatography coupled with tandem mass spectrometry. J. Food Prot. 2007, 70, 1952–1957.
[9]  Committee for Veterinary Medicinal Products. Enrofloxacin (Modification for Bovine, Porcine and Poultry). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_ Residue_Limits_-_Report/2009/11/WC500014142.pdf (accessed on 30 May 2013).
[10]  Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of Certain Veterinary Drug Residues in Food; WHO technical report series 879; WHO: Geneva, Switzerland, 1998. Available online: http://whqlibdoc.who.int/trs/WHO_TRS_879.pdf (accessed on 27 November 2013).
[11]  Stephen, A.M.; Cummings, J.H. The microbial contribution to human fecal mass. J. Med. Microbiol. 1980, 13, 45–56, doi:10.1099/00222615-13-1-45.
[12]  Ahn, Y.; Sung, K.; Rafii, F.; Cerniglia, C.E. Effect of sterilized human fecal extract on the sensitivity of E. coli ATCC 25922 to enrofloxacin. J. Antibiot. 2012, 65, 179–184, doi:10.1038/ja.2012.1.
[13]  Capoor, M.R.; Nair, D.; Rajni; Khanna, G.; Krishna, S.V.; Chintamani, M.S.; Aggarwal, P. Microflora of bile aspirates in patients with acute cholecystitis with or without cholelithiasis: A tropical experience. Braz. J. Infect. Dis. 2008, 12, 222–225.
[14]  Chen, W.X.; Li, D.; Paulus, B.; Wilson, I.; Chadwick, V.S. Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J. Gastroenterol. Hepatol. 2000, 15, 1145–1150, doi:10.1046/j.1440-1746.2000.02331.x.
[15]  Braoudaki, M.; Hilton, A.C. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int. J. Antimicrob. Agents 2005, 25, 31–37, doi:10.1016/j.ijantimicag.2004.07.016.
[16]  Ahn, Y.; Linder, S.W.; Veach, B.T.; Yan, S.S.; Fernandez, A.H.; Pineiro, S.A.; Cerniglia, C.E. In vitro enrofloxacin binding in human fecal slurries. Regul. Toxicol. Pharmacol. 2012, 62, 74–84, doi:10.1016/j.yrtph.2011.11.013.
[17]  Adjei, M.D.; Heinze, T.M.; Deck, J.; Freeman, J.P.; Williams, A.J.; Sutherland, J.B. Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can. J. Microbiol. 2007, 53, 144–147, doi:10.1139/w06-101.
[18]  Jung, C.M.; Heinze, T.M.; Strakosha, R.; Elkins, C.A.; Sutherland, J.B. Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J. Appl. Microbiol. 2009, 106, 564–571, doi:10.1111/j.1365-2672.2008.04026.x.
[19]  Gullberg, E.; Cao, S.; Berg, O.G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158, doi:10.1371/journal.ppat.1002158.
[20]  Piddock, L.J.V. Mechanisms of fluoroquinolone resistance: An update 1994–1998. Drugs 1999, 58, 11–18, doi:10.2165/00003495-199958002-00003.
[21]  Ruiz, J. Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 2003, 51, 1109–1117, doi:10.1093/jac/dkg222.
[22]  Soto, S.M.; Ruiz, J.; Mendoza, M.C.; Vila, J. In vitro fluoroquinolone-resistant mutants of Salmonella enterica serotype Enteritidis: Analysis of mechanisms involved in resistance. Int. J. Antimicrob. Agents 2003, 22, 537–540, doi:10.1016/S0924-8579(03)00241-3.
[23]  Amaral, L.; Cerca, P.; Spengler, G.; Machado, L.; Martins, A.; Couto, I.; Viveiros, M.; Fanning, S.; Pages, J.M. Ethidium bromide efflux by Salmonella: Modulation by metabolic energy, pH, ions and phenothiazines. Int. J. Antimicrob. Agents 2011, 38, 140–145, doi:10.1016/j.ijantimicag.2011.03.014.
[24]  Coldham, N.G.; Webber, M.; Woodward, M.J.; Piddock, L.J.V. A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother. 2010, 65, 1655–1663, doi:10.1093/jac/dkq169.
[25]  Ricci, V.; Piddock, L. Accumulation of garenoxacin by Bacteroides fragilis compared with that of five fluoroquinolones. J. Antimicrob. Chemother. 2003, 52, 605–609, doi:10.1093/jac/dkg418.
[26]  Giraud, E.; Brisabois, A.; Martel, J.-L.; Chaslus-Dancla, E. Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counter selection of highly fluoroquinolone-resistant strains in the field. Antimicrob. Agents Chemother. 1999, 43, 2131–2137.
[27]  Eaves, D.J.; Liebana, E.; Woodward, M.J.; Piddock, L.J.V. Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J. Clin. Microbiol. 2002, 40, 4121–4125, doi:10.1128/JCM.40.11.4121-4125.2002.
[28]  Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, 7th ed. ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006.
[29]  Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel-electrophoresis—Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239.
[30]  Rafii, F.; Park, M.; Wynne, R. Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy 2005, 51, 256–262.
[31]  Bozzola, J.J.; Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed. ed.; Jones & Bartlett Publishers, Inc.: Sudbury, MA, USA, 1999.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133