全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Designing Safer and Greener Antibiotics

DOI: 10.3390/antibiotics2030419

Keywords: antibiotic, resistance, environment, ionic liquid, green chemistry, biodegradation, toxicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the production of the first pharmaceutically active molecules at the beginning of the 1900s, drug molecules and their metabolites have been observed in the environment in significant concentrations. In this review, the persistence of antibiotics in the environment and their associated effects on ecosystems, bacterial resistance and health effects will be examined. Solutions to these problems will also be discussed, including the pharmaceutical industries input, green chemistry, computer modeling and representative ionic liquid research.

References

[1]  Bell, F.G.; Genske, D.D.; Hytiris, N.; Lindsay, P. A survey of contaminated ground with illustrative case histories. Land Degrad. Dev. 2000, 11, 419–437, doi:10.1002/1099-145X(200009/10)11:5<419::AID-LDR398>3.0.CO;2-A.
[2]  Kummerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434, doi:10.1016/j.chemosphere.2008.11.086.
[3]  Demain, A.L. Antibiotics: Natural products essential to human health. Med. Res. Rev. 2009, 29, 821–842, doi:10.1002/med.20154.
[4]  Milla, S.; Depiereux, S.; Kestemont, P. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: A review. Ecotoxicology 2011, 20, 305–319, doi:10.1007/s10646-010-0588-7.
[5]  Lanzky, P.F.; Halling-Sorensen, B. The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere 1997, 35, 2553–2561, doi:10.1016/S0045-6535(97)00324-X.
[6]  Smyth, E.C.M.; Hannan, M.; McMahon, S.; Philbin, M. Meticillin-resistant Staphylococcus aureus (Mrsa) in Ireland: Addressing the issues. Available online: http://www.pfizer.ie/UserFiles/File/news_releases/MRSA_Report_FINAL.pdf (acessed on 27 November 2012).
[7]  Harbottle, H.; Thakur, S.; Zhao, S.; White, D.G. Genetics of antimicrobial resistance. Anim. Biotechnol. 2006, 17, 111–124, doi:10.1080/10495390600957092.
[8]  Schnabel, E.L.; Jones, A.L. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl. Environ. Microbiol. 1999, 65, 4898–4907.
[9]  Esiobu, N.; Armenta, L.; Ike, J. Antibiotic resistance in soil and water environments. Int. J. Environ. Health Res. 2002, 12, 133–144, doi:10.1080/09603120220129292.
[10]  Herwig, R.P.; Gray, J.P.; Weston, D.P. Antibacterial resistant bacteria in surficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture 1997, 149, 263–283, doi:10.1016/S0044-8486(96)01455-X.
[11]  Halling-Sorensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Lutzhoft, H.C.H.; Jorgensen, S.E. Occurrence, fate and effects of pharmaceutical substances in the environment—A review. Chemosphere 1998, 36, 357–394, doi:10.1016/S0045-6535(97)00354-8.
[12]  Li, D.; Yang, M.; Hu, J.; Zhang, Y.; Chang, H.; Jin, F. Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res. 2008, 42, 307–317, doi:10.1016/j.watres.2007.07.016.
[13]  Summers, A.O. Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim. Biotechnol. 2006, 17, 125–135, doi:10.1080/10495390600957217.
[14]  Olsen, J.E. Antibiotic resistance: Genetic mechanisms and mobility. Acta Vet. Scand. Suppl. 1999, 92, 15–22.
[15]  Fan, C.A.; He, J.Z. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O. Water Res. 2011, 45, 3098–3106, doi:10.1016/j.watres.2011.03.025.
[16]  Kotzerke, A.; Sharma, S.; Schauss, K.; Heuer, H.; Thiele-Bruhn, S.; Smalla, K.; Wilke, B.M.; Schloter, M. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ. Pollut. 2008, 153, 315–322, doi:10.1016/j.envpol.2007.08.020.
[17]  Costanzo, S.D.; Murby, J.; Bates, J. Ecosystem response to antibiotics entering the aquatic environment. Mar. Pollut. Bull. 2005, 51, 218–223, doi:10.1016/j.marpolbul.2004.10.038.
[18]  Lai, H.T.; Hou, J.H.; Su, C.I.; Chen, C.L. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotox. Environ. Safe. 2009, 72, 329–334, doi:10.1016/j.ecoenv.2008.03.005.
[19]  Lutzhoft, H.C.H.; Halling-Sorensen, B.; Jorgensen, S.E. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol. 1999, 36, 1–6, doi:10.1007/s002449900435.
[20]  Kummerer, K. Handbook of Green Chemistry Volume 9: Designing Safer Chemicals, 1st ed. ed.; Wiley-VCH: Hoboken, NJ, USA, 2012; pp. 251–272.
[21]  Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; p. 3.
[22]  Sheldon, R.A. Atom utilisation, E factors and the catalytic solution. CR Acad. Sci. 2000, 3, 541–551.
[23]  Trost, B.M. The atom economy—A search for synthetic efficiency. Science 1991, 254, 1471–1477.
[24]  Ali, A.R.; Ghosh, H.; Patel, B.K. A greener synthetic protocol for the preparation of carbodiimide. Tetrahedron Lett. 2010, 51, 1019–1021, doi:10.1016/j.tetlet.2009.12.017.
[25]  Jungnickel, C.; Stock, F.; Brandsch, T.; Ranke, J. Risk assessment of biocides in roof paint. Environ. Sci. Pollut. Res. 2008, 15, 258–265, doi:10.1065/espr2007.12.465.
[26]  DeSimone, J.M. Practical approaches to green solvents. Science 2002, 297, 799–803, doi:10.1126/science.1069622.
[27]  Roberts, B.A.; Strauss, C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res. 2005, 38, 653–661, doi:10.1021/ar040278m.
[28]  Infante, M.R.; Perez, L.; Moran, M.C.; Pons, R.; Mitjans, M.; Vinardell, M.P.; Garcia, M.T.; Pinazo, A. Biocompatible surfactants from renewable hydrophiles. Eur. J. Lipid Sci. Technol. 2010, 112, 110–121, doi:10.1002/ejlt.200900110.
[29]  Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev. 2012, 41, 1452–1461, doi:10.1039/c1cs15041c.
[30]  Anastas, P.T.; Kirchhoff, M.M.; Williamson, T.C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A 2001, 221, 3–13, doi:10.1016/S0926-860X(01)00793-1.
[31]  Jungnickel, C.; Mrozik, W.; Markiewicz, M.; Luczak, J. Fate of ionic liquids in soils and sediments. Curr. Org. Chem. 2011, 15, 1928–1945, doi:10.2174/138527211795703702.
[32]  Wang, J. Real-time electrochemical monitoring: Toward green analytical chemistry. Acc. Chem. Res. 2002, 35, 811–816, doi:10.1021/ar010066e.
[33]  Duspara, P.A.; Islam, M.S.; Lough, A.J.; Batey, R.A. Synthesis and Reactivity of N-Alkyl Carbamoylimidazoles: Development of N-Methyl Carbamoylimidazole as a Methyl Isocyanate Equivalent. J. Org. Chem. 2012, 77, 10362–10368, doi:10.1021/jo302084a.
[34]  Andraos, J. On using tree analysis to quantify the material, input energy, and cost throughput efficiencies of simple and complex synthesis plans and networks: Towards a blueprint for quantitative total synthesis and green chemistry. Org. Process Res. Dev. 2006, 10, 212–240, doi:10.1021/op0501904.
[35]  Andraos, J. Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes; Blackwell-Wiley: Oxford, UK, 2008; pp. 69–200.
[36]  Andraos, J. Global green chemistry metrics analysis algorithm and spreadsheets: Evaluation of the material efficiency performances of synthesis plans for oseltamivir phosphate (Tamiflu) as a test case. Org. Process Res. Dev. 2009, 13, 161–185, doi:10.1021/op800157z.
[37]  Andraos, J. A database tool for process chemists and chemical engineers to gauge the material and synthetic efficiencies of synthesis plans to industrially important targets. Pure Appl. Chem. 2011, 83, 1361–1378, doi:10.1351/PAC-CON-10-10-07.
[38]  Constable, D.J.C.; Jimenez-Gonzalez, C.; Henderson, R.K. Perspective on solvent use in the pharmaceutical industry. Org. Process Res. Dev. 2007, 11, 133–137, doi:10.1021/op060170h.
[39]  Jiménez-González, C.; Curzons, A.; Constable, D.C.; Cunningham, V. Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. Int. J. LCA 2004, 9, 114–121, doi:10.1007/BF02978570.
[40]  Han van de Waterbeemd, E.G. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2003, 2, 192–204, doi:10.1038/nrd1032.
[41]  Cho, C.W.; Preiss, U.; Jungnickel, C.; Stolte, S.; Arning, J.; Ranke, J.; Klamt, A.; Krossing, I.; Thoming, J. Ionic liquids: Predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution. J. Phys. Chem. B 2011, 115, 6040–6050, doi:10.1021/jp200042f.
[42]  Kümmerer, K.; Hempel, M. Green and Sustainable Pharmacy; Springer: Berlin Heidelberg, Germany, 2010; p. 313.
[43]  META. Available online: http://www.multicase.com/products/prod05.htm (accessed on 9 August 2013).
[44]  BIOWIN. Available online: http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm (accessed on 9 August 2013).
[45]  CATABOL. Available online: http://oasis-lmc.org/?section=software&swid=1 (accessed on 9 August 2013).
[46]  TOPKAT. Available online: http://accelrys.com/products/discovery-studio/predictive-toxicology.html (accessed on 9 August 2013).
[47]  Marchetti, S.; Schellens, J.H.M. The impact of FDA and EMEA guidelines on drug development in relation to Phase 0 trials. Br. J. Cancer 2007, 97, 577–581, doi:10.1038/sj.bjc.6603925.
[48]  Schellens, J.H.M. Phase 0 (zero) clinical trials: More than zero benefit? Eur. J. Cancer 2009, 45, 728–729, doi:10.1016/j.ejca.2009.01.022.
[49]  Kummar, S.R.L.; Kinders, R.; Parchment, R.E.; Gutierrez, M.E.; Murgo, A.J.; Ji, J.; Mroczkowski, B.; Pickeral, O.K.; Simpson, M.; Hollingshead, M.; et al. Phase 0 clinical trials: Conceptions and misconceptions. Cancer J. 2008, 14, 133–137, doi:10.1097/PPO.0b013e318172d6f3.
[50]  Green Chemistry. Available online: http://www.epa.gov/opptintr/greenchemistry/pubs/pgcc/winners/grca10.html (accessed on 24 October 2012).
[51]  Green Chemistry. Available online: http://www.epa.gov/opptintr/greenchemistry/pubs/pgcc/winners/gspa04.html (accessed on 24 October 2012).
[52]  Coleman, D.; Gathergood, N. Biodegradation studies of ionic liquids. Chem. Soc. Rev. 2010, 39, 600–637, doi:10.1039/b817717c.
[53]  Morrissey, S.; Pegot, B.; Coleman, D.; Garcia, M.T.; Ferguson, D.; Quilty, B.; Gathergood, N. Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: A step towards ‘greener’ ionic liquids. Green Chem. 2009, 11, 475–483, doi:10.1039/b812809j.
[54]  Bouquillon, S.; Courant, T.; Dean, D.; Gathergood, N.; Morrissey, S.; Pegot, B.; Scammells, P.J.; Singer, R.D. Biodegradable ionic liquids: Selected synthetic applications. Aust. J. Chem. 2007, 60, 843–847, doi:10.1071/CH07257.
[55]  Hough, W.L.; Rogers, R.D. Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 2007, 80, 2262–2269, doi:10.1246/bcsj.80.2262.
[56]  Choi, S.Y.; Rodriguez, H.; Mirjafari, A.; Gilpin, D.F.; McGrath, S.; Malcolm, K.R.; Tunney, M.M.; Rogers, R.D.; McNally, T. Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chem. 2011, 13, 1527–1535, doi:10.1039/c1gc15132k.
[57]  Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem. 2009, 11, 492–497, doi:10.1039/b821842k.
[58]  Craythorne, S.J.; Anderson, K.; Lorenzini, F.; McCausland, C.; Smith, E.F.; Licence, P.; Marr, A.C.; Marr, P.C. The co-entrapment of a homogeneous catalyst and an ionic liquid by a sol-gel method: Recyclable ionogel hydrogenation catalysts. Chem.-Eur. J. 2009, 15, 7094–7100, doi:10.1002/chem.200801809.
[59]  Hough, W.L.; Smiglak, M.; Rodriguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The third evolution of ionic liquids: Active pharmaceutical ingredients. New J. Chem. 2007, 31, 1429–1436, doi:10.1039/b706677p.
[60]  Pinazo, A.; Lozano, N.; Perez, L.; Moran, M.C.; Infante, M.R.; Pons, R. Arginine diacyl-glycerolipid conjugates as multifunctional biocompatible surfactants. CR Chim. 2011, 14, 726–735, doi:10.1016/j.crci.2010.10.004.
[61]  Gathergood, N.; Scammells, P.J.; Garcia, M.T. Biodegradable ionic liquids: Part III. The first readily biodegradable ionic liquids. Green Chem. 2006, 8, 156–160, doi:10.1039/b516206h.
[62]  Garcia, M.T.; Gathergood, N.; Scammells, P.J. Biodegradable ionic liquids: Part II. Effect of the anion and toxicology. Green Chem. 2005, 7, 9–14, doi:10.1039/b411922c.
[63]  Gathergood, N.; Garcia, M.T.; Scammells, P.J. Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 2004, 6, 166–175, doi:10.1039/b315270g.
[64]  Coleman, D.; Spulak, M.; Garcia, M.T.; Gathergood, N. Antimicrobial toxicity studies of ionic liquids leading to a ‘hit’ MRSA selective antibacterial imidazolium salt. Green Chem. 2012, 14, 1350–1356, doi:10.1039/c2gc16090k.
[65]  Castillo, J.A.; Clapes, P.; Infante, M.R.; Comas, J.; Manresa, A. Comparative study of the antimicrobial activity of bis(N-alpha-caproyl-L-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 2006, 57, 691–698, doi:10.1093/jac/dkl012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133