This study presents the evaluation of seven pharmaceutical compounds belonging to different commonly used therapeutic classes in seawater samples from coastal areas of Gran Canaria Island. The target compounds include atenolol (antihypertensive), acetaminophen (analgesic), norfloxacin and ciprofloxacin (antibiotics), carbamazepine (antiepileptic) and ketoprofen and diclofenac (anti-inflammatory). Solid phase extraction (SPE) was used for the extraction and preconcentration of the samples, and liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for the determination of the compounds. Under optimal conditions, the recoveries obtained were in the range of 78.3% to 98.2%, and the relative standard deviations were less than 11.8%. The detection and quantification limits of the method were in the ranges of 0.1–2.8 and 0.3–9.3 ng·L ?1, respectively. The developed method was applied to evaluate the presence of these pharmaceutical compounds in seawater from four outfalls in Gran Canaria Island (Spain) during one year. Ciprofloxacin and norfloxacin were found in a large number of samples in a concentration range of 9.0–3551.7 ng·L ?1. Low levels of diclofenac, acetaminophen and ketoprofen were found sporadically.
References
[1]
Fuerhacker, M. EU water framework directive and Stockholm convention. Environ. Sci. Pollut. Res. 2009, 16, 92–97, doi:10.1007/s11356-009-0126-4.
[2]
Vargas, F. La contaminación ambiental como factor determinante de la salud. Rev. Esp. Salud. Publica 2005, 79, 117–127, doi:10.1590/S1135-57272005000200001.
[3]
European Commission. Directive 2000/60/EC of the European Parliament and of the council 23 October 2000 establishing a framework for community action in the field of water policy. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:02000L0060-20090113:EN:NOT (accessed on 22 December 2000).
[4]
Wille, K.; de Brander, H.F.; de Wulf, E.; van Caeter, P.; Janssen, C.R.; Vanhaecke, L. Coupled chromatograhic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. Trac-Trend. Anal. Chem. 2012, 35, 87–108, doi:10.1016/j.trac.2011.12.003.
[5]
Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodriguez, J.J. Analysis of anti-inflammatory, analgesic, stimulant and antidepressant drugs in purified water from wastewater treatment plants using SPE-LC tandem mass spectrometry. J. Environ. Sci. Heal. A 2012, 47, 887–895.
[6]
Petrovic, M.; Farré, M.; Lopez de Alda, M.; Perez, S.; Postigo, C.; K?ck, M.; Radjenovic, J.; Gros, M.; Barcelo, D. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. J. Chromatogr. A 2010, 1217, 4004–4017, doi:10.1016/j.chroma.2010.02.059.
[7]
Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2007, 79, 4295–4324, doi:10.1021/ac070719q.
[8]
Petrovic, M.; Gonzalez, S.; Damia, B. Analysis and removal of emerging contaminants in wastewater and drinking water. Trac-Trend. Anal. Chem. 2003, 22, 685–696, doi:10.1016/S0165-9936(03)01105-1.
[9]
Zhang, Z.L.; Zhou, J.L. Simultaneous determination of various pharmaceutical compounds in water by solid-phase extraction-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1154, 205–213.
[10]
Lopez-Serna, R.; Petrovic, M.; Barcelo, D. Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci. Total. Environ. 2012, 440, 280–289, doi:10.1016/j.scitotenv.2012.06.027.
[11]
Wille, K.; Noppe, H.; Verheyden, K.; Vanden, J.; de Wulf, E.; van Caeter, P.; Janssen, C.; de Brabander, H.F.; Vanhaecke, L. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Anal. Bioanal. Chem. 2010, 397, 1797–1808, doi:10.1007/s00216-010-3702-z.
[12]
Bueno, M.J.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernandez-Alba, A. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012, 164, 267–273, doi:10.1016/j.envpol.2012.01.038.
[13]
Fatta, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399, 251–275, doi:10.1007/s00216-010-4300-9.
[14]
Ahmed, N.; Pauzi, M.; Ismail, M.; Surif, S. Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 6791–6806, doi:10.1016/j.chroma.2010.08.033.
[15]
Togola, A.; Budzinski, H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A 2008, 1177, 150–158.
[16]
Mastroianni, N.; Lopez, M.; Barcelo, D. Emerging organic contaminants in aquatic environments: State-of-the-art and recent scientific contributions. Contrib. Sci. 2010, 6, 193–197.
[17]
N?dler, K.; Licha, T.; Bester, K.; Sauter, M. Development of a multi-residue analytical method, based on liquid chromatography-tandem mass spectrometry, for the simultaneous determination of 46 micro-contaminants in aqueous samples. J. Chromatogr. A 2010, 1217, 6511–6521.
[18]
Bones, J.; Thomas, K.; Nesterenko, P.; Paull, B. On-line preconcentration of pharmaceutical residues from large volume water samples using short reversed-phase monolithic cartridges coupled to LC-UV-ESI-MS. Talanta 2006, 70, 1117–1128.
[19]
Nebot, C.; Gibb, S.W.; Boyd, K.G. Quantification of human pharmaceuticals in water samples by high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2007, 598, 87–94.
[20]
Grabic, R.; Fick, J.; Lindberg, R.; Fedeorova, G.; Tysklind, M. Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta 2012, 100, 183–195.
[21]
Fang, T.; Nan, F.; Chin, T.; Feng, H. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar. Pollut. Bull. 2012, 64, 1435–1444, doi:10.1016/j.marpolbul.2012.04.008.
[22]
Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodriguez, J.J. Comparison of solid phase extraction using micellar desorption combined with LC-FD and LC-MS/MS in the determination of antibiotics fluoroquinolonas residues in sewage samples. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2081–2096.
[23]
Golet, E.M.; Alder, A.C.; Giger, W. Environmental Exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2002, 36, 3645–3651, doi:10.1021/es0256212.
[24]
Sifrtová, M.; Pena, A.; Lino, C.M.; Solich, P. Determination of fluoroquinolone antibiotics in hospital and municipal wastewaters in Coimbra by liquid chromatography with a monolithic column and fluorescence detection. Anal. Bioanal. Chem. 2008, 391, 799–805, doi:10.1007/s00216-008-2020-1.
[25]
Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotoxicol. Environ. Safe. 2012, 80, 208–215.
[26]
Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 159, 2913–2920, doi:10.1016/j.envpol.2011.04.037.
[27]
Beausse, J. Selected drugs in solid matrices: A review of environmental determination, occurrence and properties of principal substances. Trac-Trend. Anal. Chem. 2004, 23, 753–761, doi:10.1016/j.trac.2004.08.005.