全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

The Staphylococcus aureus Membrane Protein SA2056 Interacts with Peptidoglycan Synthesis Enzymes

DOI: 10.3390/antibiotics2010011

Keywords: Staphylococcus aureus, RND protein, FemABX, PBP, peptidoglycan, bacterial two-hybrid system

Full-Text   Cite this paper   Add to My Lib

Abstract:

The yet uncharacterized membrane protein SA2056 belongs to the ubiquitous RND (Resistance-Nodulation-cell Division) family of transmembrane efflux transporters. The sa2056 gene is located downstream of femX, the gene encoding the essential, non-ribosomal peptidyl-transferase adding the first glycine in the staphylococcal cell wall pentaglycine interpeptide. Due to its proximity to and weak co-transcription with femX, we assumed that sa2056 may somehow be involved in peptidoglycan synthesis. Specific antibodies against SA2056 showed that this protein is expressed during growth and present in the membrane fraction of cell preparations. Using a bacterial two hybrid system, SA2056 was shown to interact (i) with itself, (ii) with FemB, which adds glycines 4 and 5 to the peptidoglycan interpeptide and (iii) with the essential penicillin binding proteins, PBP1 and PBP2, required for cell division and incorporation of the peptidoglycan into the cell wall. Unexpectedly, deletion of sa2056 led to no phenotype regarding growth, antibiotic resistances or cell morphology; nor did sa2056 deletion in combination with femB inactivation alter b -lactam and lysostaphin sensitivity and resistance, respectively, pointing to possible redundancy in the cell wall synthesis pathway. These results suggest an accessory role of SA2056 in S. aureus peptidoglycan synthesis, broadening the range of biological functions of RND proteins.

References

[1]  Maidhof, H.; Reinicke, B.; Blümel, P.; Berger-B?chi, B.; Labischinski, H. femA, which encodes a factor essential for expression of methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J. Bacteriol. 1991, 173, 3507–3513.
[2]  Rohrer, S.; Ehlert, K.; Tschierske, M.; Labischinski, H.; Berger-B?chi, B. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc. Natl. Acad. Sci. USA. 1999, 96, 9351–9356.
[3]  Stranden, A.M.; Ehlert, K.; Labischinski, H.; Berger-B?chi, B. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 1997, 179, 9–16.
[4]  Schneider, T.; Senn, M.M.; Berger-B?chi, B.; Tossi, A.; Sahl, H.-G.; Wiedemann, I. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol. Microbiol. 2004, 53, 675–685, doi:10.1111/j.1365-2958.2004.04149.x.
[5]  Ton-That, H.; Labischinski, H.; Berger-B?chi, B.; Schneewind, O. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 1998, 273, 29143–29149.
[6]  Ling, B.; Berger-B?chi, B. Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. Antimicrob. Agents Chemother. 1998, 42, 936–938.
[7]  Hübscher, J.; Jansen, A.; Kotte, O.; Schafer, J.; Majcherczyk, P.; Harris, L.; Bierbaum, G.; Heinemann, M.; Berger-B?chi, B. Living with an imperfect cell wall: Compensation of femAB inactivation in Staphylococcus aureus. BMC Genomics 2007, 8, doi:10.1186/1471-2164-8-307.
[8]  Berger-B?chi, B. Insertional inactivation of staphylococcal methicillin resistance by Tn551. J. Bacteriol. 1983, 154, 479–487.
[9]  Kornblum, J.; Hartman, B.J.; Novick, R.P.; Tomasz, A. Conversion of a homogeneously methicillin-resistant strain of Staphylococcus aureus to heterogeneous resistance by Tn551-mediated insertional inactivation. Eur. J. Clin. Microbiol. 1986, 5, 714–718, doi:10.1007/BF02013311.
[10]  Murakami, K.; Tomasz, A. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J. Bacteriol. 1989, 171, 874–879.
[11]  Tseng, T.T.; Gratwick, K.S.; Kollman, J.; Park, D.; Nies, D.H.; Goffeau, A.; Saier, M.H.J. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1999, 1, 107–25.
[12]  Transporter Classification Database, TCDB. Available online: http://www.tcdb.org (accessed on 24 December 2012).
[13]  Kyoto Encyclopedia of Genes and Genomes Database, KEGG. Available online: http://www.genome.jp/kegg/kegg2.html (accessed on 24 December 2012).
[14]  Rohrer, S. Studies on members of the FemABX protein family in Staphylococcus aureus. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2002.
[15]  TransTermHP. Available online: http://transterm.cbcb.umd.edu/ (accessed on 24 December 2012).
[16]  Softberry. Available online: http://linux1.softberry.com/berry.phtml (accessed on 24 December 2012).
[17]  Muthaiyan, A.; Silverman, J.A.; Jayaswal, R.K.; Wilkinson, B.J. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob. Agents Chemother. 2008, 52, 980–990, doi:10.1128/AAC.01121-07.
[18]  Chang, W.; Small, D.A.; Toghrol, F.; Bentley, W.E. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J. Bacteriol. 2006, 188, 1648–1659, doi:10.1128/JB.188.4.1648-1659.2006.
[19]  Chang, M.W.; Toghrol, F.; Bentley, W.E. Toxicogenomic response to chlorination includes induction of major virulence genes in Staphylococcus aureus. Environ. Sci. Technol. 2007, 41, 7570–7575, doi:10.1021/es070929k.
[20]  Anderson, K.L.; Roberts, C.; Disz, T.; Vonstein, V.; Hwang, K.; Overbeek, R.; Olson, P.D.; Projan, S.J.; Dunman, P.M. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J. Bacteriol. 2006, 188, 6739–6756.
[21]  Herbert, S.; Bera, A.; Nerz, C.; Kraus, D.; Peschel, A.; Goerke, C.; Meehl, M.; Cheung, A.; G?tz, F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog. 2007, 3, e102, doi:10.1371/journal.ppat.0030102.
[22]  Michel, A.; Agerer, F.; Hauck, C.R.; Herrmann, M.; Ullrich, J.; Hacker, J.; Ohlsen, K. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J. Bacteriol. 2006, 188, 5783–5796, doi:10.1128/JB.00074-06.
[23]  Banerjee, R.; Gretes, M.; Harlem, C.; Basuino, L.; Chambers, H.F. A mecA-negative strain of methicillin-resistant Staphylococcus aureus with high-level β-lactam resistance contains mutations in three genes. Antimicrob. Agents Chemother. 2010, 54, 4900–4902, doi:10.1128/AAC.00594-10.
[24]  Corrigan, R.M.; Abbott, J.C.; Burhenne, H.; Kaever, V.; Gründling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 2011, 7, e1002217, doi:10.1371/journal.ppat.1002217.
[25]  Henze, U.U.; Roos, M.; Berger-B?chi, B. Effects of penicillin-binding protein 4 overproduction in Staphylococcus aureus. Microb. Drug Resist. 1996, 2, 193–199, doi:10.1089/mdr.1996.2.193.
[26]  Sieradzki, K.; Pinho, M.G.; Tomasz, A. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J. Biol. Chem. 1999, 274, 18942–18946.
[27]  Leski, T.A.; Tomasz, A. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: Evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J. Bacteriol. 2005, 187, 1815–1824, doi:10.1128/JB.187.5.1815-1824.2005.
[28]  Memmi, G.; Filipe, S.R.; Pinho, M.G.; Fu, Z.; Cheung, A. Staphylococcus aureus PBP4 is essential for β-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob. Agents Chemother. 2008, 52, 3955–3966, doi:10.1128/AAC.00049-08.
[29]  Griffiths, J.M.; O'Neill, A.J. Loss of function of the GdpP protein leads to joint β-lactam/ glycopeptide tolerance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2011, 56, 579–581, doi:10.1128/AAC.05148-11.
[30]  Pozzi, C.; Waters, E.M.; Rudkin, J.K.; Schaeffer, C.R.; Lohan, A.J.; Tong, P.; Loftus, B.J.; Pier, G.B.; Fey, P.D.; Massey, R.C.; et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012, 8, e1002626, doi:10.1371/journal.ppat.1002626.
[31]  Quiblier, C.; Zinkernagel, A.; Schuepbach, R.; Berger-B?chi, B.; Senn, M. Contribution of SecDF to Staphylococcus aureus resistance and expression of virulence factors. BMC Microbiol. 2011, 11, doi:10.1186/1471-2180-11-72.
[32]  Ender, M.; McCallum, N.; Berger-B?chi, B. Impact of mecA promoter mutations on mecA expression and β-lactam resistance levels. Int. J. Med. Microbiol. 2008, 298, 607–617, doi:10.1016/j.ijmm.2008.01.015.
[33]  Garen, A.; Levinthal, C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli I. Purification and characterization of alkaline phosphatase. Biochim. Biophys. Acta 1960, 38, 470–483, doi:10.1016/0006-3002(60)91282-8.
[34]  Derman, A.I.; Beckwith, J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J. Bacteriol. 1991, 173, 7719–7722.
[35]  Akiyama, Y.; Ito, K. Folding and assembly of bacterial alkaline phosphatase in vitro and in vivo. J. Biol. Chem. 1993, 268, 8146–8150.
[36]  Drew, D.; Sj?strand, D.; Nilsson, J.; Urbig, T.; Chin, C.N.; de Gier, J.W.; von Heijne, G. Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc. Natl. Acad. Sci. USA 2002, 99, 2690–2695.
[37]  Karimova, G.; Pidoux, J.; Ullmann, A.; Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 1998, 95, 5752–5756.
[38]  Murakami, S.; Nakashima, R.; Yamashita, E.; Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002, 419, 587–593, doi:10.1038/nature01050.
[39]  Henze, U.; Sidow, T.; Wecke, J.; Labischinski, H.; Berger-B?chi, B. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J. Bacteriol. 1993, 175, 1612–1620.
[40]  Berger-B?chi, B.; Tschierske, M. Role of fem factors in methicillin resistance. Drug Resist. Updat. 1998, 1, 325–335, doi:10.1016/S1368-7646(98)80048-4.
[41]  Over, B.; Heusser, R.; McCallum, N.; Schulthess, B.; Kupferschmied, P.; Gaiani, J.M.; Sifri, C.D.; Berger-B?chi, B.; Stutzmann Meier, P. LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. FEMS Microbiol. Lett. 2011, 320, 142–151, doi:10.1111/j.1574-6968.2011.02303.x.
[42]  Cheung, A.; Eberhardt, K.; Fischetti, V. A method to isolate RNA from gram-positive bacteria and mycobacteria. Anal. Biochem. 1994, 222, 511–514, doi:10.1006/abio.1994.1528.
[43]  Rohrer, S.; Berger-B?chi, B. Application of a bacterial two-hybrid system for the analysis of protein-protein interactions between FemABX family proteins. Microbiology 2003, 149, 2733–2738, doi:10.1099/mic.0.26315-0.
[44]  Miroux, B.; Walker, J.E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 1996, 260, 289–298, doi:10.1006/jmbi.1996.0399.
[45]  Schneewind, O.; Mihaylova-Petkov, D.; Model, P. Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J. 1993, 12, 4803–4811.
[46]  TMHMM. Available online: http://cbs.dtu.dk/services/TMHMM-2.0/ (accessed on 24 December 2012).
[47]  DAS. Available online: http://www.sbc.su.se/~miklos/DAS/ (accessed on 24 December 2012).
[48]  HMMTOP. Available online: http://www.enzim.hu/hmmtop/ (accessed on 24 December 2012).
[49]  MEMSAT. Available online: http://bioinf.cs.ucl.ac.uk/software_downloads/memsat/ (accessed on 24 December 2012).
[50]  SOSUI. Available online: http://bp.nuap.nagoya-u.ac.jp/sosui/ (accessed on 24 December 2012).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133