全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus

DOI: 10.3390/antibiotics2010083

Keywords: Staphylococcus aureus, resistance, antibiotics, biocides, efflux

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide information on approaches useful to the assessment and characterization of efflux activity, as well as contributing to our understanding of the role of efflux to phenotypes of antibiotic resistance and biocide tolerance in S. aureus clinical isolates. The results described show that efflux is an important contributor to fluoroquinolone resistance in S. aureus and suggest it as a major mechanism in the early stages of resistance development. We also show that efflux plays an important role on the reduced susceptibility to biocides in S. aureus, strengthening the importance of this long neglected resistance mechanism to the persistence and proliferation of antibiotic/biocide-resistant S. aureus in the hospital environment.

References

[1]  Paulsen, I.T.; Brown, M.H.; Skurray, R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996, 60, 575–608.
[2]  Poole, K. Bacterial multidrug efflux pumps serve other functions. Microbe 2008, 3, 179–185.
[3]  Piddock, L.J.V. Multidrug-resistance efflux pumps? not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636, doi:10.1038/nrmicro1464.
[4]  Piddock, L.J.V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 2006, 19, 382–402, doi:10.1128/CMR.19.2.382-402.2006.
[5]  Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 2007, 39, 162–176, doi:10.1080/07853890701195262.
[6]  DeMarco, C.E.; Cushing, L.A.; Frempong-Manso, E.; Seo, S.M.; Jaravasa, T.A.A.; Kaatz, G.W. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3235–3239.
[7]  Costa, S.S.; Falc?o, C.; Viveiros, M.; Machado, D.; Martins, M.; Melo-Cristino, J.; Amaral, L.; Couto, I. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011, 11, e241, doi:10.1186/1471-2180-11-241.
[8]  Kosmidis, C.; Schindler, B.D.; Jacinto, P.L.; Patel, D.; Bains, K.; Kaatz, G.W. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 2012, 40, 204–209, doi:10.1016/j.ijantimicag.2012.04.014.
[9]  Yoshida, H.; Bogaki, M.; Nakamura, S.; Ubukata, K.; Konno, M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 1990, 172, 6942–6949.
[10]  Kaatz, G.W.; Seo, S.M.; O'Brien, L.; Wahiduzzaman, M.; Foster, T.J. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1404–1406, doi:10.1128/AAC.44.5.1404-1406.2000.
[11]  Viveiros, M.; Martins, M.; Couto, I.; Rodrigues, L.; Spengler, G.; Martins, A.; Kristiansen, J.E.; Molnar, J.; Amaral, L. New methods for the identification of efflux mediated MDR bacteria, genetic assessment of regulators and efflux pump constituents, characterization of efflux systems and screening of inhibitors of efflux pumps. Curr. Drug Targets 2008, 9, 760–768, doi:10.2174/138945008785747734.
[12]  Martins, M.; Viveiros, M.; Couto, I.; Costa, S.S.; Pacheco, T.; Fanning, S.; Pagès, J.M.; Amaral, L. Identification of efflux pump-mediated multidrug-resistant bacteria by the Ethidium Bromide-Agar Cartwheel Method. In Vivo 2011, 25, 171–178.
[13]  Viveiros, M.; Rodrigues, L.; Martins, M.; Couto, I.; Spengler, G.; Martins, A.; Amaral, L. Evaluation of Efflux Activity of Bacteria by A Semi-automated Fluorometric System. In Antibiotic Resistance Protocols; Gillespie, S.H., McHugh, T.D., Eds.; Methods in Molecular Biology Series; Humana Press: New York, NY, USA, 2010; Volume 642, pp. 159–172.
[14]  Patel, D.; Kosmidis, C.; Seo, S.M.; Kaatz, G.W. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5070–5073, doi:10.1128/AAC.01058-10.
[15]  Wolfson, J.S.; Hooper, D.C. The fluoroquinolones: Structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 1985, 28, 581–586, doi:10.1128/AAC.28.4.581.
[16]  Hooper, D.C. Mechanisms of fluoroquinolone resistance. Drug Res. Upd. 1999, 2, 38–55, doi:10.1054/drup.1998.0068.
[17]  European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2010. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC: Stockholm, Sweden, 2011.
[18]  Ferrero, L.; Cameron, B.; Crouzet, J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 1995, 39, 1554–1558, doi:10.1128/AAC.39.7.1554.
[19]  Tanaka, M.; Wang, T.; Onodera, Y.; Uchida, Y.; Sato, K. Mechanism of quinolone resistance in Staphylococcus aureus. J. Infect. Chemother. 2000, 6, 131–139, doi:10.1007/s101560070010.
[20]  Noguchi, N.; Okihara, T.; Namiki, Y.; Kumaki, Y.; Yamanaka, Y.; Koyama, M.; Wakasugi, K.; Sasatsu, M. Susceptibility and resistance genes to fluoroquinolones in methicillin-resistant Staphylococcus aureus isolated in 2002. Int. J. Antimicrob. Agents 2005, 25, 374–379, doi:10.1016/j.ijantimicag.2004.11.016.
[21]  Kaatz, G.W.; Seo, S.M.; Ruble, C.A. Mechanisms of fluoroquinolone resistance in Staphylococcus aureus. J. Infect. Dis. 1991, 163, 1080–1086, doi:10.1093/infdis/163.5.1080.
[22]  Schmitz, F.-J.; Fluit, A.C.; Lückefahr, M.; Engler, B.; Hofmann, B.; Verhoef, J.; Heinz, H.-P.; Hadding, U.; Jones, M.E. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 1998, 42, 807–810, doi:10.1093/jac/42.6.807.
[23]  Mu?oz-Bellido, J.L.; Manzanares, M.A.A.; Martínez, J.á.; Guttiérrez Zufiaurre, M.N.; Ortiz, G.; Segovia Hernández, M.; García-Rodríguez, J.A. Efflux pump-mediated quinolones resistance in Staphylococcus aureus strains wild-type for gyrA, gyrB, grlA, and norA. Antimicrob. Agents Chemother. 1999, 43, 354–356.
[24]  Tanaka, M.; Zhang, Y.X.; Ishida, H.; Akasaka, T.; Sato, K.; Hayakawa, I. Mechanisms of 4-quinolone resistance in quinolones-resistant and methicillin-resistant Staphylococcus aureus isolates from Japan and China. J. Med. Microbiol. 1995, 42, 214–219, doi:10.1099/00222615-42-3-214.
[25]  Schmitz, F.-J.; K?hrer, K.; Scheuring, S.; Verhoef, J.; Fluit, A.; Heinz, H.P.; Jones, M.E. The stability of grlA, grlB, gyrA, gyrB and norA mutations and MIC values of five fluoroquinolones in three different clonal populations of methicillin-resistant Staphylococcus aure. Clin. Microbiol. Infect. 1999, 5, 287–290, doi:10.1111/j.1469-0691.1999.tb00143.x.
[26]  Schmitz, F.-J.; Fluit, A.C.; Brisse, S.; Verhoef, J.; K?hrer, K.; Milatovic, D. Molecular epidemiology of quinolones resistance and comparative in vitro activities of new quinolones against European Staphylococcus aureus isolates. FEMS Immunol. Med. Microbiol. 1999, 26, 281–287, doi:10.1111/j.1574-695X.1999.tb01400.x.
[27]  Guirao, G.Y.; Martínez Toldos, M.C.; Mora Peris, B.; Alonso Manzanares, M.A.; Gutiérrez Zufiaurre, M.N.; Martínez Andrés, J.A.; Mu?oz Bellido, J.L.; García-Rodríguez, J.A.; Segovia Hernández, M. Molecular diversity of quinolones resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. J. Antimicrob. Chemother. 2001, 47, 157–161, doi:10.1093/jac/47.2.157.
[28]  Horii, T.; Suzuki, Y.; Monji, A.; Morita, M.; Muramatsu, H.; Kondo, Y.; Doi, M.; Takeshita, A.; Kanno, T.; Maekawa, M. Detection of mutations in quinolone resistance-determining regions in levofloxacin- and methicillin-resistant Staphylococcus aureus: Effects of the mutations on fluoroquinolone MICs. Diagn. Microbiol. Infect. Dis. 2003, 46, 139–145, doi:10.1016/S0732-8893(03)00037-3.
[29]  Truong-Bolduc, Q.C.; Dunman, P.M.; Strahilevitz, J.; Projan, S.J.; Hooper, D.C. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J. Bacteriol. 2005, 187, 2395–2405, doi:10.1128/JB.187.7.2395-2405.2005.
[30]  Truong-Bolduc, Q.C.; Strahilevitz, J.; Hooper, D.C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 1104–1107, doi:10.1128/AAC.50.3.1104-1107.2006.
[31]  Kaatz, G.W.; McAleese, F.; Seo, S.M. Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob. Agents Chemother. 2005, 49, 1857–1864, doi:10.1128/AAC.49.5.1857-1864.2005.
[32]  Wang, T.; Tanaka, M.; Sato, K. Detection of grlA and gyrA mutations in 344 Staphylococcus aureus strains. Antimicrob. Agents Chemother. 1998, 42, 236–240.
[33]  Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-second Informational Supplement M100-S22. CLSI: Wayne, PA, USA, 2012.
[34]  Singh, R.; Swick, M.C.; Ledesma, K.R.; Yang, Z.; Hu, M.; Zechiedrich, L.; Tam, V.H. Temporal interplay between efflux pumps and target mutations in development of antibiotic resistance in Escherichia coli. Antimicrob. Agents Chemother. 2012, 56, 1680–1685, doi:10.1128/AAC.05693-11.
[35]  Machado, D.; Couto, I.; Perdig?o, J.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 2012, 7, e34538.
[36]  Markham, P.N.; Neyfakh, A.A. Inhibition of the multidrug transporter NorA prevents emergence of norfloxacin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 40, 2673–2674.
[37]  Sulavik, M.C.; Barg, N.L. Examination of methicillin-resistant and methicillin-susceptible Staphylococcus aureus mutants with low-level fluoroquinolone resistance. Antimicrob. Agents Chemother. 1998, 42, 3317–3319.
[38]  Huet, A.A.; Raygada, J.L.; Mendiratta, K.; Seo, S.M.; Kaatz, G.W. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 2008, 154, 3144–3153, doi:10.1099/mic.0.2008/021188-0.
[39]  McDonnell, G.; Russel, A.D. Antiseptics and disinfectants: Activity, action and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179.
[40]  Gilbert, P.; Moore, L.E. Cationic antiseptics: Diversity of action under a common epithet. J. Appl. Microbiol. 2005, 99, 703–715, doi:10.1111/j.1365-2672.2005.02664.x.
[41]  Gilbert, P.; McBain, A.J. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin. Microbiol. Rev. 2003, 16, 189–208, doi:10.1128/CMR.16.2.189-208.2003.
[42]  Maillard, J.Y. Bacterial resistance to biocides in the healthcare environment: Should it be of genuine concern? J. Hosp. Infect. 2007, 65, 60–72, doi:10.1016/S0195-6701(07)60018-8.
[43]  Grinius, L.L.; Goldberg, E.B. Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J. Biol. Chem. 1994, 269, 29998–30004.
[44]  Mayer, S.; Boos, M.; Beyer, A.; Fluit, A.C.; Schmitz, F.-J. Distribution of the antiseptic resistance genes qacA, qacB, and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 2001, 47, 893–895, doi:10.1093/jac/47.6.893.
[45]  Zmantar, T.; Kouidhi, B.; Miladi, H.; Bakhrouf, A. Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC Res. Notes 2011, 4, e453, doi:10.1186/1756-0500-4-453.
[46]  Longtin, J.; Seah, C.; Siebert, K.; McGeer, A.; Simor, A.; Longtin, Y.; Low, D.E.; Melano, R.G. Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob. Agents Chemother. 2011, 55, 2999–3001, doi:10.1128/AAC.01707-10.
[47]  Weber, D.J.; Rutala, W.A.; Sickbert-Bennett, E.E. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 2007, 51, 4217–4224, doi:10.1128/AAC.00138-07.
[48]  Buffet-Bataillon, S.; Tattevin, P.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Emergence of resistance to antibacterial agents: The role of quaternary ammonium compounds—A critical review. Int. J. Antimicrob. Agents. 2012, 39, 381–389, doi:10.1016/j.ijantimicag.2012.01.011.
[49]  Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Assessment of the antibiotic resistance effects of biocides. 2009.
[50]  Couto, I.; Costa, S.S.; Viveiros, M.; Martins, M.; Amaral, L. Efflux-mediated response of Staphylococcus aureus exposed to ethidium bromide. J. Antimicrob. Chemother. 2008, 62, 504–513, doi:10.1093/jac/dkn217.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133