全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibiotics  2013 

Bacterial Responses and Genome Instability Induced by Subinhibitory Concentrations of Antibiotics

DOI: 10.3390/antibiotics2010100

Keywords: antibiotics, resistance, stress response, mutagenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nowadays, the emergence and spread of antibiotic resistance have become an utmost medical and economical problem. It has also become evident that subinhibitory concentrations of antibiotics, which pollute all kind of terrestrial and aquatic environments, have a non-negligible effect on the evolution of antibiotic resistance in bacterial populations. Subinhibitory concentrations of antibiotics have a strong effect on mutation rates, horizontal gene transfer and biofilm formation, which may all contribute to the emergence and spread of antibiotic resistance. Therefore, the molecular mechanisms and the evolutionary pressures shaping the bacterial responses to subinhibitory concentrations of antibiotics merit to be extensively studied. Such knowledge is valuable for the development of strategies to increase the efficacy of antibiotic treatments and to extend the lifetime of antibiotics used in therapy by slowing down the emergence of antibiotic resistance.

References

[1]  Davies, J. Vicious circles: Looking back on resistance plasmids. Genetics 1995, 139, 1465–1468.
[2]  Berdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 65, 385–395, doi:10.1038/ja.2012.27.
[3]  Mascaretti, O.A. Bacteria Versus Antibacterial Agents. An Integrated Approach; ASM Press: Washington, D.C., USA, 2003.
[4]  Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810, doi:10.1016/j.cell.2007.06.049.
[5]  Dwyer, D.J.; Camacho, D.M.; Kohanski, M.A.; Callura, J.M.; Collins, J.J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell 2012, 46, 561–572, doi:10.1016/j.molcel.2012.04.027.
[6]  Foti, J.J.; Devadoss, B.; Winkler, J.A.; Collins, J.J.; Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 2012, 336, 315–319, doi:10.1126/science.1219192.
[7]  Marinelli, F. Chapter 2. From microbial products to novel drugs that target a multitude of disease indications. Methods Enzymol. 2009, 458, 29–58.
[8]  Currie, C.R.; Mueller, U.G.; Malloch, D. The agricultural pathology of ant fungus gardens. Proc. Natl. Acad. Sci. 1999, 96, 7998–8002, doi:10.1073/pnas.96.14.7998.
[9]  Neeno-Eckwall, E.C.; Kinkel, L.L.; Schottel, J.L. Competition and antibiosis in the biological control of potato scab. Can. J. Microbiol. 2001, 47, 332–340, doi:10.1139/w01-010.
[10]  Davies, J.; Spiegelman, G.B.; Yim, G. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 2006, 9, 445–453, doi:10.1016/j.mib.2006.08.006.
[11]  Romero, D.; Traxler, M.F.; Lopez, D.; Kolter, R. Antibiotics as signal molecules. Chem. Rev. 2011, 111, 5492–5505, doi:10.1021/cr2000509.
[12]  Kummerer, K. Significance of antibiotics in the environment. J. Antimicrob. Chemother. 2003, 52, 5–7, doi:10.1093/jac/dkg293.
[13]  Baharoglu, Z.; Mazel, D. Vibriocholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: A route towards multiresistance. Antimicrob. Agents Chemother. 2011, 55, 2438–2441, doi:10.1128/AAC.01549-10.
[14]  Thi, T.D.; Lopez, E.; Rodriguez-Rojas, A.; Rodriguez-Beltran, J.; Couce, A.; Guelfo, J.R.; Castaneda-Garcia, A.; Blazquez, J. Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J. Antimicrob. Chemother. 2011, 66, 531–538, doi:10.1093/jac/dkq496.
[15]  Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodriguez Rojas, A.; Blazquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; et al. β-Lactam antibiotics promote mutagenesis via RpoS-mediated replication fidelity reduction. Nat. Commun. 2013. in press.
[16]  Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D.; Schultz, R.A.; Ellenberger, T. DNA Repair and Mutagenesis; ASM Press: Washington D.C., USA, 2006.
[17]  Courcelle, J.; Khodursky, A.; Peter, B.; Brown, P.O.; Hanawalt, P.C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 2001, 158, 41–64.
[18]  Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392.
[19]  Miller, C.; Thomsen, L.E.; Gaggero, C.; Mosseri, R.; Ingmer, H.; Cohen, S.N. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 2004, 305, 1629–1631.
[20]  Kohanski, M.A.; Dwyer, D.J.; Wierzbowski, J.; Cottarel, G.; Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 2008, 135, 679–690, doi:10.1016/j.cell.2008.09.038.
[21]  Battesti, A.; Majdalani, N.; Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 2011, 65, 189–213.
[22]  Chiang, S.M.; Schellhorn, H.E. Evolution of the RpoSregulon: Origin of RpoS and the conservation of RpoS-dependent regulation in bacteria. J. Mol. Evol. 2010, 70, 557–571, doi:10.1007/s00239-010-9352-0.
[23]  Denamur, E.; Matic, I. Evolution of mutation rates in bacteria. Mol. Microbiol. 2006, 60, 820–827, doi:10.1111/j.1365-2958.2006.05150.x.
[24]  Drummond, L.J.; Smith, D.G.; Poxton, I.R. Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile. J. Med. Microbiol. 2003, 52, 1033–1038, doi:10.1099/jmm.0.05387-0.
[25]  Grimwood, K.; To, M.; Rabin, H.R.; Woods, D.E. Inhibition of Pseudomonas aeruginosa exoenzyme expression by subinhibitory antibiotic concentrations. Antimicrob. Agents Chemother. 1989, 33, 41–47, doi:10.1128/AAC.33.1.41.
[26]  Joo, H.S.; Chan, J.L.; Cheung, G.Y.; Otto, M. Subinhibitory concentrations of protein synthesis-inhibiting antibiotics promote increased expression of the agr virulence regulator and production of phenol-soluble modulincytolysins in community-associated methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 4942–4944, doi:10.1128/AAC.00064-10.
[27]  Ohlsen, K.; Ziebuhr, W.; Koller, K.P.; Hell, W.; Wichelhaus, T.A.; Hacker, J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 1998, 42, 2817–2823.
[28]  Subrt, N.; Mesak, L.R.; Davies, J. Modulation of virulence gene expression by cell wall active antibiotics in Staphylococcus aureus. J. Antimicrob. Chemother. 2011, 66, 979–984, doi:10.1093/jac/dkr043.
[29]  Zhang, Q.; Lambert, G.; Liao, D.; Kim, H.; Robin, K.; Tung, C.K.; Pourmand, N.; Austin, R.H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 2011, 333, 1764–1767, doi:10.1126/science.1208747.
[30]  Mah, T.F.; O'Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39, doi:10.1016/S0966-842X(00)01913-2.
[31]  Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679, doi:10.1128/JB.182.10.2675-2679.2000.
[32]  Drenkard, E. Antimicrobial resistance of pseudomonas aeruginosa biofilms. Microbes Infect. 2003, 5, 1213–1219, doi:10.1016/j.micinf.2003.08.009.
[33]  Hentzer, M.; Teitzel, G.M.; Balzer, G.J.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M.R. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 2001, 183, 5395–5401, doi:10.1128/JB.183.18.5395-5401.2001.
[34]  Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998, 280, 295–298, doi:10.1126/science.280.5361.295.
[35]  Hoffman, L.R.; D'Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436, 1171–1175, doi:10.1038/nature03912.
[36]  Boehm, A.; Steiner, S.; Zaehringer, F.; Casanova, A.; Hamburger, F.; Ritz, D.; Keck, W.; Ackermann, M.; Schirmer, T.; Jenal, U. Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol. Microbiol. 2009, 72, 1500–1516, doi:10.1111/j.1365-2958.2009.06739.x.
[37]  Bagge, N.; Schuster, M.; Hentzer, M.; Ciofu, O.; Givskov, M.; Greenberg, E.P.; Hoiby, N. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 2004, 48, 1175–1187, doi:10.1128/AAC.48.4.1175-1187.2004.
[38]  Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low levels of beta-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio 2012, 3, e00198–e00112.
[39]  Rogers, P.D.; Liu, T.T.; Barker, K.S.; Hilliard, G.M.; English, B.K.; Thornton, J.; Swiatlo, E.; McDaniel, L.S. Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J. Antimicrob. Chemother. 2007, 59, 616–626, doi:10.1093/jac/dkl560.
[40]  Sailer, F.C.; Meberg, B.M.; Young, K.D. Beta-lactam induction of colanic acid gene expression in escherichia coli. FEMS Microbiol. Lett. 2003, 226, 245–249, doi:10.1016/S0378-1097(03)00616-5.
[41]  Aminov, R.I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2011, 2, doi:10.3389/fmicb.2011.00158.
[42]  Barr, V.; Barr, K.; Millar, M.R.; Lacey, R.W. Beta-lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J. Antimicrob. Chemother. 1986, 17, 409–413, doi:10.1093/jac/17.4.409.
[43]  Stevens, A.M.; Shoemaker, N.B.; Li, L.Y.; Salyers, A.A. Tetracycline regulation of genes on bacteroides conjugative transposons. J. Bacteriol. 1993, 175, 6134–6141.
[44]  Torres, O.R.; Korman, R.Z.; Zahler, S.A.; Dunny, G.M. The conjugative transposon Tn925: Enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in bacillus subtilis and E. faecalis. Mol. Gen. Genet. 1991, 225, 395–400.
[45]  D'Costa, V.M.; McGrann, K.M.; Hughes, D.W.; Wright, G.D. Sampling the antibiotic resistome. Science 2006, 311, 374–377, doi:10.1126/science.1120800.
[46]  D'Costa, V.M.; Griffiths, E.; Wright, G.D. Expanding the soil antibiotic resistome: Exploring environmental diversity. Curr. Opin. Microbiol. 2007, 10, 481–489.
[47]  Heuer, H.; Kopmann, C.; Binh, C.T.; Top, E.M.; Smalla, K. Spreading antibiotic resistance through spread manure: Characteristics of a novel plasmid type with low %g+c content. Environ. Microbiol. 2009, 11, 937–949, doi:10.1111/j.1462-2920.2008.01819.x.
[48]  Beaber, J.W.; Hochhut, B.; Waldor, M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 2004, 427, 72–74, doi:10.1038/nature02241.
[49]  Ubeda, C.; Maiques, E.; Knecht, E.; Lasa, I.; Novick, R.P.; Penades, J.R. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 2005, 56, 836–844, doi:10.1111/j.1365-2958.2005.04584.x.
[50]  Guerin, E.; Cambray, G.; Sanchez-Alberola, N.; Campoy, S.; Erill, I.; Da Re, S.; Gonzalez-Zorn, B.; Barbe, J.; Ploy, M.C.; Mazel, D. The SOS response controls integron recombination. Science 2009, 324, 1034, doi:10.1126/science.1172914.
[51]  Prudhomme, M.; Attaiech, L.; Sanchez, G.; Martin, B.; Claverys, J.P. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 2006, 313, 89–92, doi:10.1126/science.1127912.
[52]  Salyers, A.A.; Gupta, A.; Wang, Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004, 12, 412–416, doi:10.1016/j.tim.2004.07.004.
[53]  Bahl, M.I.; Sorensen, S.J.; Hansen, L.H.; Licht, T.R. Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl. Environ. Microbiol. 2004, 70, 758–764, doi:10.1128/AEM.70.2.758-764.2004.
[54]  Doucet-Populaire, F.; Trieu-Cuot, P.; Dosbaa, I.; Andremont, A.; Courvalin, P. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. AntimicrobAgents Chemother. 1991, 35, 185–187, doi:10.1128/AAC.35.1.185.
[55]  Kohanski, M.A.; DePristo, M.A.; Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 2010, 37, 311–320, doi:10.1016/j.molcel.2010.01.003.
[56]  Komp Lindgren, P.; Karlsson, A.; Hughes, D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob. Agents Chemother. 2003, 47, 3222–3232, doi:10.1128/AAC.47.10.3222-3232.2003.
[57]  Pena, C.; Albareda, J.M.; Pallares, R.; Pujol, M.; Tubau, F.; Ariza, J. Relationship between quinolone use and emergence of ciprofloxacin-resistant Escherichia coli in bloodstream infections. Antimicrob. Agents Chemother. 1995, 39, 520–524, doi:10.1128/AAC.39.2.520.
[58]  Gullberg, E.; Cao, S.; Berg, O.G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoSPathog. 2011, 7, e1002158.
[59]  Blazquez, J.; Couce, A.; Rodriguez-Beltran, J.; Rodriguez-Rojas, A. Antimicrobials as promoters of genetic variation. Curr. Opin. Microbiol. 2012, 15, 561–569.
[60]  Chen, C.R.; Malik, M.; Snyder, M.; Drlica, K. DNA gyrase and topoisomerase IV on the bacterial chromosome: Quinolone-induced DNA cleavage. J. Mol. Biol. 1996, 258, 627–637, doi:10.1006/jmbi.1996.0274.
[61]  Michel, B.; Grompone, G.; Flores, M.J.; Bidnenko, V. Multiple pathways process stalled replication forks. Proc. Natl. Acad. Sci. 2004, 101, 12783–12788.
[62]  Anderson, D.G.; Kowalczykowski, S.C. Reconstitution of an sos response pathway: Derepression of transcription in response to DNA breaks. Cell 1998, 95, 975–979, doi:10.1016/S0092-8674(00)81721-3.
[63]  Cirz, R.T.; Chin, J.K.; Andes, D.R.; de Crecy-Lagard, V.; Craig, W.A.; Romesberg, F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoSBiol. 2005, 3, e176.
[64]  Veigl, M.L.; Schneiter, S.; Mollis, S.; Sedwick, W.D. Specificities mediated by neighboring nucleotides appear to underlie mutation induced by antifolates in E. coli. Mutation Res. 1991, 246, 75–91, doi:10.1016/0027-5107(91)90109-2.
[65]  Perez-Capilla, T.; Baquero, M.R.; Gomez-Gomez, J.M.; Ionel, A.; Martin, S.; Blazquez, J. SOS-independent induction of DINB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J. Bacteriol. 2005, 187, 1515–1518, doi:10.1128/JB.187.4.1515-1518.2005.
[66]  Lopez, E.; Elez, M.; Matic, I.; Blazquez, J. Antibiotic-mediated recombination: Ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Mol. Microbiol. 2007, 64, 83–93, doi:10.1111/j.1365-2958.2007.05642.x.
[67]  Balashov, S.; Humayun, M.Z. Mistranslation induced by streptomycin provokes a RecABC/ RuvABC-dependent mutator phenotype in Escherichia coli cells. J. Mol. Biol. 2002, 315, 513–527.
[68]  Henderson-Begg, S.K.; Livermore, D.M.; Hall, L.M. Effect of subinhibitory concentrations of antibiotics on mutation frequency in Streptococcus pneumoniae. J. Antimicrob. Chemother. 2006, 57, 849–854, doi:10.1093/jac/dkl064.
[69]  Varhimo, E.; Savijoki, K.; Jefremoff, H.; Jalava, J.; Sukura, A.; Varmanen, P. Ciprofloxacin induces mutagenesis to antibiotic resistance independent of umuc in Streptococcus uberis. Environ. Microbiol. 2008, 10, 2179–2183, doi:10.1111/j.1462-2920.2008.01634.x.
[70]  Nagel, R.; Chan, A. Mistranslation and genetic variability: The effect of streptomycin. Mutation Res. 2006, 601, 162–170, doi:10.1016/j.mrfmmm.2006.06.012.
[71]  Murphy, H.S.; Humayun, M.Z. Escherichia coli cells expressing a mutant glyV (glycinetRNA) gene have a UVM-constitutive phenotype: Implications for mechanisms underlying the mutA or mutCmutator effect. J. Bacteriol. 1997, 179, 7507–7514.
[72]  Ren, L.; Rahman, M.S.; Humayun, M.Z. Escherichia coli cells exposed to streptomycin display a mutator phenotype. J. Bacteriol. 1999, 181, 1043–1044.
[73]  Slupska, M.M.; Baikalov, C.; Lloyd, R.; Miller, J.H. MutatortRNAs are encoded by the Escherichia coli mutator genes mutA and mutC: A novel pathway for mutagenesis. Proc. Natl. Acad. Sci. 1996, 93, 4380–4385.
[74]  Kobayashi, S.; Valentine, M.R.; Pham, P.; O’Donnell, M.; Goodman, M.F. Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by DNTP-stabilized misalignment. J. Biol. Chem. 2002, 277, 34198–34207.
[75]  Petrosino, J.F.; Galhardo, R.S.; Morales, L.D.; Rosenberg, S.M. Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J. Bacteriol. 2009, 191, 5881–5889, doi:10.1128/JB.00732-09.
[76]  Wagner, J.; Nohmi, T. Escherichia coli DNA polymerase IV mutator activity: Genetic requirements and mutational specificity. J. Bacteriol. 2000, 182, 4587–4595, doi:10.1128/JB.182.16.4587-4595.2000.
[77]  Yamada, M.; Nunoshiba, T.; Shimizu, M.; Gruz, P.; Kamiya, H.; Harashima, H.; Nohmi, T. Involvement of Y-family DNA polymerases in mutagenesis caused by oxidized nucleotides in Escherichia coli. J. Bacteriol. 2006, 188, 4992–4995, doi:10.1128/JB.00281-06.
[78]  Frohlich, K.S.; Papenfort, K.; Berger, A.A.; Vogel, J. A conserved RpoS-dependent small RNA controls the synthesis of major porin ompd. Nucleic Acids Res. 2012, 40, 3623–3640, doi:10.1093/nar/gkr1156.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133