全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

Communication between B-Cells and Microbiota for the Maintenance of Intestinal Homeostasis

DOI: 10.3390/antib2040535

Keywords: IgA, microbiota, intestine, pathogen, commensal, probiotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

The human intestine is populated with an extremely dense and diverse bacterial community. Commensal bacteria act as an important antigenic stimulus producing the maturation of gut-associated lymphoid tissue (GALT). The production of immunoglobulin (Ig) A by B-cells in the GALT is one of the immune responses following intestinal colonization of bacteria. The switch of B-cells from IgM to IgA-producing cells in the Peyer’s patches and neighboring lamina propria proceeds by T-cell-dependent and T-cell-independent mechanisms. Several grams of secretory IgA (SIgA) are released into the intestine each day. SIgA serves as a first-line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. SIgA has a capacity to directly quench bacterial virulence factors, influence the composition of the intestinal microbiota, and promote the transportation of antigens across the intestinal epithelium to GALT and down-regulate proinflammatory responses associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the reciprocal interactions between intestinal B cells and bacteria, specifically, the formation of IgA in the gut, the role of intestinal IgA in the regulation of bacterial communities and the maintenance of intestinal homeostasis, and the effects of probiotics on IgA levels in the gastrointestinal tract.

References

[1]  Sonnenburg, J.L.; Angenent, L.T.; Gordon, J.I. Getting a Grip on Things: How Do Communities of Bacterial Symbionts Become Established in Our Intestine? Nat. Immunol. 2004, 5, 569–573, doi:10.1038/ni1079.
[2]  Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810.
[3]  O'Hara, A.M.; Shanahan, F. The Gut Flora As a Forgotten Organ. EMBO Rep. 2006, 7, 688–693, doi:10.1038/sj.embor.7400731.
[4]  Suzuki, K.; Ha, S.A.; Tsuji, M.; Fagarasan, S. Intestinal IgA Synthesis: A Primitive Form of Adaptive Immunity That Regulates Microbial Communities in the Gut. Semin. Immunol. 2007, 19, 127–135, doi:10.1016/j.smim.2006.10.001.
[5]  Rakoff-Nahoum, S.; Paglino, J.; Eslami-Varzaneh, F.; Edberg, S.; Medzhitov, R. Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell 2004, 118, 229–241.
[6]  Ouellette, A.J. Paneth Cells and Innate Immunity in the Crypt Microenvironment. Gastroenterology 1997, 113, 1779–1784, doi:10.1053/gast.1997.v113.pm9352884.
[7]  Brandl, K.; Plitas, G.; Schnabl, B.; DeMatteo, R.P.; Pamer, E.G. MyD88-Mediated Signals Induce the Bactericidal Lectin RegIII Gamma and Protect Mice Against Intestinal Listeria Monocytogenes Infection. J. Exp. Med. 2007, 204, 1891–1900.
[8]  Hooper, L.V.; Stappenbeck, T.S.; Hong, C.V.; Gordon, J.I. Angiogenins: A New Class of Microbicidal Proteins Involved in Innate Immunity. Nat. Immunol. 2003, 4, 269–273.
[9]  Salzman, N.H.; Underwood, M.A.; Bevins, C.L. Paneth Cells, Defensins, and the Commensal Microbiota: A Hypothesis on Intimate Interplay at the Intestinal Mucosa. Semin. Immunol. 2007, 19, 70–83.
[10]  Golovkina, T.V.; Shlomchik, M.; Hannum, L.; Chervonsky, A. Organogenic Role of B Lymphocytes in Mucosal Immunity. Science 1999, 286, 1965–1968.
[11]  Mizoguchi, A.; Mizoguchi, E.; Takedatsu, H.; Blumberg, R.S.; Bhan, A.K. Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity 2002, 16, 219–230.
[12]  Cerutti, A.; Chen, K.; Chorny, A. Immunoglobulin Responses at the Mucosal Interface. Annu. Rev. Immunol. 2011, 29, 273–293.
[13]  Macpherson, A.J.; McCoy, K.D.; Johansen, F.E.; Brandtzaeg, P. The Immune Geography of IgA Induction and Function. Mucosal. Immunol. 2008, 1, 11–22.
[14]  van der Heijden, P.J.; Stok, W.; Bianchi, A.T. Contribution of Immunoglobulin-Secreting Cells in the Murine Small Intestine to the Total 'Background' Immunoglobulin Production. Immunology 1987, 62, 551–555.
[15]  Apter, F.M.; Lencer, W.I.; Finkelstein, R.A.; Mekalanos, J.J.; Neutra, M.R. Monoclonal Immunoglobulin A Antibodies Directed Against Cholera Toxin Prevent the Toxin-Induced Chloride Secretory Response and Block Toxin Binding to Intestinal Epithelial Cells in Vitro. Infect. Immun. 1993, 61, 5271–5278.
[16]  Helander, A.; Miller, C.L.; Myers, K.S.; Neutra, M.R.; Nibert, M.L. Protective Immunoglobulin A and G Antibodies Bind to Overlapping Intersubunit Epitopes in the Head Domain of Type 1 Reovirus Adhesin Sigma1. J. Virol. 2004, 78, 10695–10705.
[17]  Mantis, N.J.; McGuinness, C.R.; Sonuyi, O.; Edwards, G.; Farrant, S.A. Immunoglobulin A Antibodies Against Ricin A and B Subunits Protect Epithelial Cells From Ricin Intoxication. Infect. Immun. 2006, 74, 3455–3462, doi:10.1128/IAI.02088-05.
[18]  Hutchings, A.B.; Helander, A.; Silvey, K.J.; Chandran, K.; Lucas, W.T.; Nibert, M.L.; Neutra, M.R. Secretory Immunoglobulin A Antibodies Against the Sigma1 Outer Capsid Protein of Reovirus Type 1 Lang Prevent Infection of Mouse Peyer's Patches. J. Virol. 2004, 78, 947–957, doi:10.1128/JVI.78.2.947-957.2004.
[19]  Deplancke, B.; Gaskins, H.R. Microbial Modulation of Innate Defense: Goblet Cells and the Intestinal Mucus Layer. Am. J. Clin. Nutr. 2001, 73, 1131S–1141S.
[20]  Lievin-Le, M.V.; Servin, A.L. The Front Line of Enteric Host Defense Against Unwelcome Intrusion of Harmful Microorganisms: Mucins, Antimicrobial Peptides, and Microbiota. Clin. Microbiol. Rev. 2006, 19, 315–337, doi:10.1128/CMR.19.2.315-337.2006.
[21]  Mantis, N.J.; Forbes, S.J. Secretory IgA: Arresting Microbial Pathogens at Epithelial Borders. Immunol. Invest 2010, 39, 383–406, doi:10.3109/08820131003622635.
[22]  Shikina, T.; Hiroi, T.; Iwatani, K.; Jang, M.H.; Fukuyama, S.; Tamura, M.; Kubo, T.; Ishikawa, H.; Kiyono, H. IgA Class Switch Occurs in the Organized Nasopharynx- and Gut-Associated Lymphoid Tissue, but Not in the Diffuse Lamina Propria of Airways and Gut. J. Immunol. 2004, 172, 6259–6264.
[23]  Bealmear, P.M.; Mirand, E.A.; Holtermann, O.A. Miscellaneous Immune Defects in Gnotobiotic and SPF Mice. Prog. Clin. Biol. Res. 1983, 132C, 423–432.
[24]  Ouwehand, A.; Isolauri, E.; Salminen, S. The Role of the Intestinal Microflora for the Development of the Immune System in Early Childhood. Eur. J. Nutr. 2002, 41, I32–I37.
[25]  Macpherson, A.J.; Uhr, T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004, 303, 1662–1665, doi:10.1126/science.1091334.
[26]  Shulzhenko, N.; Morgun, A.; Hsiao, W.; Battle, M.; Yao, M.; Gavrilova, O.; Orandle, M.; Mayer, L.; Macpherson, A.J.; McCoy, K.D.; et al. Crosstalk Between B Lymphocytes, Microbiota and the Intestinal Epithelium Governs Immunity Versus Metabolism in the Gut. Nat. Med. 2011, 17, 1585–1593, doi:10.1038/nm.2505.
[27]  Fagarasan, S.; Muramatsu, M.; Suzuki, K.; Nagaoka, H.; Hiai, H.; Honjo, T. Critical Roles of Activation-Induced Cytidine Deaminase in the Homeostasis of Gut Flora. Science 2002, 298, 1424–1427, doi:10.1126/science.1077336.
[28]  Wei, B.; Su, T.T.; Dalwadi, H.; Stephan, R.P.; Fujiwara, D.; Huang, T.T.; Brewer, S.; Chen, L.; Arditi, M.; Borneman, J.; et al. Resident Enteric Microbiota and CD8+ T Cells Shape the Abundance of Marginal Zone B Cells. Eur. J. Immunol. 2008, 38, 3411–3425, doi:10.1002/eji.200838432.
[29]  Lundell, A.C.; Bjornsson, V.; Ljung, A.; Ceder, M.; Johansen, S.; Lindhagen, G.; Tornhage, C.J.; Adlerberth, I.; Wold, A.E.; Rudin, A. Infant B Cell Memory Differentiation and Early Gut Bacterial Colonization. J. Immunol. 2012, 188, 4315–4322, doi:10.4049/jimmunol.1103223.
[30]  Rudin, A.; Lundell, A.C. Infant B Cell Memory and Gut Bacterial Colonization. Gut Microbes. 2012, 3, 474–475.
[31]  Mellander, L.; Carlsson, B.; Jalil, F.; Soderstrom, T.; Hanson, L.A. Secretory IgA Antibody Response Against Escherichia Coli Antigens in Infants in Relation to Exposure. J. Pediatr. 1985, 107, 430–433, doi:10.1016/S0022-3476(85)80528-X.
[32]  Adlerberth, I.; Carlsson, B.; de, M.P.; Jalil, F.; Khan, S.R.; Larsson, P.; Mellander, L.; Svanborg, C.; Wold, A.E.; Hanson, L.A. Intestinal Colonization With Enterobacteriaceae in Pakistani and Swedish Hospital-Delivered Infants. Acta Paediatr. Scand. 1991, 80, 602–610, doi:10.1111/j.1651-2227.1991.tb11917.x.
[33]  Adlerberth, I.; Wold, A.E. Establishment of the Gut Microbiota in Western Infants. Acta Paediatr. 2009, 98, 229–238, doi:10.1111/j.1651-2227.2008.01060.x.
[34]  Nowrouzian, F.; Hesselmar, B.; Saalman, R.; Strannegard, I.L.; Aberg, N.; Wold, A.E.; Adlerberth, I. Escherichia Coli in Infants' Intestinal Microflora: Colonization Rate, Strain Turnover, and Virulence Gene Carriage. Pediatr. Res. 2003, 54, 8–14, doi:10.1203/01.PDR.0000069843.20655.EE.
[35]  Janzi, M.; Kull, I.; Sjoberg, R.; Wan, J.; Melen, E.; Bayat, N.; Ostblom, E.; Pan-Hammarstrom, Q.; Nilsson, P.; Hammarstrom, L. Selective IgA Deficiency in Early Life: Association to Infections and Allergic Diseases During Childhood. Clin. Immunol. 2009, 133, 78–85, doi:10.1016/j.clim.2009.05.014.
[36]  Malamut, G.; Verkarre, V.; Suarez, F.; Viallard, J.F.; Lascaux, A.S.; Cosnes, J.; Bouhnik, Y.; Lambotte, O.; Bechade, D.; Ziol, M.; et al. The Enteropathy Associated With Common Variable Immunodeficiency: the Delineated Frontiers With Celiac Disease. Am. J. Gastroenterol. 2010, 105, 2262–2275, doi:10.1038/ajg.2010.214.
[37]  Meini, A.; Pillan, N.M.; Villanacci, V.; Monafo, V.; Ugazio, A.G.; Plebani, A. Prevalence and Diagnosis of Celiac Disease in IgA-Deficient Children. Ann. Allergy Asthma Immunol. 1996, 77, 333–336, doi:10.1016/S1081-1206(10)63329-7.
[38]  Hamada, H.; Hiroi, T.; Nishiyama, Y.; Takahashi, H.; Masunaga, Y.; Hachimura, S.; Kaminogawa, S.; Takahashi-Iwanaga, H.; Iwanaga, T.; Kiyono, H.; et al. Identification of Multiple Isolated Lymphoid Follicles on the Antimesenteric Wall of the Mouse Small Intestine. J. Immunol. 2002, 168, 57–64.
[39]  Randall, T.D.; Carragher, D.M.; Rangel-Moreno, J. Development of Secondary Lymphoid Organs. Annu. Rev. Immunol. 2008, 26, 627–650, doi:10.1146/annurev.immunol.26.021607.090257.
[40]  Nishikawa, S.; Honda, K.; Vieira, P.; Yoshida, H. Organogenesis of Peripheral Lymphoid Organs. Immunol. Rev. 2003, 195, 72–80, doi:10.1034/j.1600-065X.2003.00063.x.
[41]  King, C.; Tangye, S.G.; Mackay, C.R. T Follicular Helper (TFH) Cells in Normal and Dysregulated Immune Responses. Annu. Rev. Immunol. 2008, 26, 741–766, doi:10.1146/annurev.immunol.26.021607.090344.
[42]  Casola, S.; Otipoby, K.L.; Alimzhanov, M.; Humme, S.; Uyttersprot, N.; Kutok, J.L.; Carroll, M.C.; Rajewsky, K. B Cell Receptor Signal Strength Determines B Cell Fate. Nat. Immunol. 2004, 5, 317–327.
[43]  Cebra, J.J. Influences of Microbiota on Intestinal Immune System Development. Am. J. Clin. Nutr. 1999, 69, 1046S–1051S.
[44]  Muramatsu, M.; Kinoshita, K.; Fagarasan, S.; Yamada, S.; Shinkai, Y.; Honjo, T. Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme. Cell 2000, 102, 553–563, doi:10.1016/S0092-8674(00)00078-7.
[45]  Chieppa, M.; Rescigno, M.; Huang, A.Y.; Germain, R.N. Dynamic Imaging of Dendritic Cell Extension into the Small Bowel Lumen in Response to Epithelial Cell TLR Engagement. J. Exp. Med. 2006, 203, 2841–2852, doi:10.1084/jem.20061884.
[46]  Hooper, L.V.; Macpherson, A.J. Immune Adaptations That Maintain Homeostasis With the Intestinal Microbiota. Nat. Rev. Immunol. 2010, 10, 159–169, doi:10.1038/nri2710.
[47]  Sato, A.; Hashiguchi, M.; Toda, E.; Iwasaki, A.; Hachimura, S.; Kaminogawa, S. CD11b+ Peyer's Patch Dendritic Cells Secrete IL-6 and Induce IgA Secretion From Naive B Cells. J. Immunol. 2003, 171, 3684–3690.
[48]  Fan, H.; Rothstein, T.L. Lymphokine Dependence of STAT3 Activation Produced by Surface Immunoglobulin Cross-Linking and by Phorbol Ester Plus Calcium Ionophore Treatment in B Cells. Eur. J. Immunol. 2001, 31, 665–671, doi:10.1002/1521-4141(200102)31:2<665::AID-IMMU665>3.0.CO;2-1.
[49]  Weber-Nordt, R.M.; Riley, J.K.; Greenlund, A.C.; Moore, K.W.; Darnell, J.E.; Schreiber, R.D. Stat3 Recruitment by Two Distinct Ligand-Induced, Tyrosine-Phosphorylated Docking Sites in the Interleukin-10 Receptor Intracellular Domain. J. Biol. Chem. 1996, 271, 27954–27961.
[50]  Lafarge, S.; Hamzeh-Cognasse, H.; Richard, Y.; Pozzetto, B.; Cogne, M.; Cognasse, F.; Garraud, O. Complexes Between Nuclear Factor-KappaB P65 and Signal Transducer and Activator of Transcription 3 Are Key Actors in Inducing Activation-Induced Cytidine Deaminase Expression and Immunoglobulin A Production in CD40L Plus Interleukin-10-Treated Human Blood B Cells. Clin. Exp. Immunol. 2011, 166, 171–183, doi:10.1111/j.1365-2249.2011.04465.x.
[51]  Macpherson, A.J.; Lamarre, A.; McCoy, K.; Harriman, G.R.; Odermatt, B.; Dougan, G.; Hengartner, H.; Zinkernagel, R.M. IgA Production Without Mu or Delta Chain Expression in Developing B Cells. Nat. Immunol. 2001, 2, 625–631, doi:10.1038/89775.
[52]  Taylor, R.T.; Patel, S.R.; Lin, E.; Butler, B.R.; Lake, J.G.; Newberry, R.D.; Williams, I.R. Lymphotoxin-Independent Expression of TNF-Related Activation-Induced Cytokine by Stromal Cells in Cryptopatches, Isolated Lymphoid Follicles, and Peyer's Patches. J. Immunol. 2007, 178, 5659–5667.
[53]  Tsuji, M.; Suzuki, K.; Kitamura, H.; Maruya, M.; Kinoshita, K.; Ivanov, I.I.; Itoh, K.; Littman, D.R.; Fagarasan, S. Requirement for Lymphoid Tissue-Inducer Cells in Isolated Follicle Formation and T Cell-Independent Immunoglobulin A Generation in the Gut. Immunity 2008, 29, 261–271, doi:10.1016/j.immuni.2008.05.014.
[54]  Lorenz, R.G.; Chaplin, D.D.; McDonald, K.G.; McDonough, J.S.; Newberry, R.D. Isolated Lymphoid Follicle Formation Is Inducible and Dependent Upon Lymphotoxin-Sufficient B Lymphocytes, Lymphotoxin Beta Receptor, and TNF Receptor I Function. J. Immunol. 2003, 170, 5475–5482.
[55]  Gardby, E.; Kagrdic, D.; Kjerrulf, M.; Bromander, A.; Vajdy, M.; Hornquist, E.; Lycke, N. The Influence of Costimulation and Regulatory CD4+ T Cells on Intestinal IgA Immune Responses. Dev. Immunol. 1998, 6, 53–60, doi:10.1155/1998/75718.
[56]  Tezuka, H.; Abe, Y.; Iwata, M.; Takeuchi, H.; Ishikawa, H.; Matsushita, M.; Shiohara, T.; Akira, S.; Ohteki, T. Regulation of IgA Production by Naturally Occurring TNF/INOS-Producing Dendritic Cells. Nature 2007, 448, 929–933, doi:10.1038/nature06033.
[57]  He, B.; Xu, W.; Santini, P.A.; Polydorides, A.D.; Chiu, A.; Estrella, J.; Shan, M.; Chadburn, A.; Villanacci, V.; Plebani, A.; et al. Intestinal Bacteria Trigger T Cell-Independent Immunoglobulin A(2) Class Switching by Inducing Epithelial-Cell Secretion of the Cytokine APRIL. Immunity 2007, 26, 812–826, doi:10.1016/j.immuni.2007.04.014.
[58]  Mackay, F.; Schneider, P. TACI, an Enigmatic BAFF/APRIL Receptor, With New Unappreciated Biochemical and Biological Properties. Cytokine Growth Factor Rev. 2008, 19, 263–276, doi:10.1016/j.cytogfr.2008.04.006.
[59]  Tsuji, M.; Suzuki, K.; Kinoshita, K.; Fagarasan, S. Dynamic Interactions Between Bacteria and Immune Cells Leading to Intestinal IgA Synthesis. Semin. Immunol. 2008, 20, 59–66, doi:10.1016/j.smim.2007.12.003.
[60]  Mackay, F.; Leung, H. The Role of the BAFF/APRIL System on T Cell Function. Semin. Immunol. 2006, 18, 284–289, doi:10.1016/j.smim.2006.04.005.
[61]  Pabst, O. New Concepts in the Generation and Functions of IgA. Nat. Rev. Immunol. 2012, 12, 821–832, doi:10.1038/nri3322.
[62]  Fritz, J.H.; Rojas, O.L.; Simard, N.; McCarthy, D.D.; Hapfelmeier, S.; Rubino, S.; Robertson, S.J.; Larijani, M.; Gosselin, J.; Ivanov, I.I.; et al. Acquisition of a Multifunctional IgA+ Plasma Cell Phenotype in the Gut. Nature 2012, 481, 199–203.
[63]  Berlin, C.; Berg, E.L.; Briskin, M.J.; Andrew, D.P.; Kilshaw, P.J.; Holzmann, B.; Weissman, I.L.; Hamann, A.; Butcher, E.C. Alpha 4 Beta 7 Integrin Mediates Lymphocyte Binding to the Mucosal Vascular Addressin MAdCAM-1. Cell 1993, 74, 185–195, doi:10.1016/0092-8674(93)90305-A.
[64]  Bowman, E.P.; Kuklin, N.A.; Youngman, K.R.; Lazarus, N.H.; Kunkel, E.J.; Pan, J.; Greenberg, H.B.; Butcher, E.C. The Intestinal Chemokine Thymus-Expressed Chemokine (CCL25) Attracts IgA Antibody-Secreting Cells. J. Exp. Med. 2002, 195, 269–275, doi:10.1084/jem.20010670.
[65]  Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904, doi:10.1152/physrev.00045.2009.
[66]  Walter, J.; Ley, R. The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annu. Rev. Microbiol. 2011, 65, 411–429, doi:10.1146/annurev-micro-090110-102830.
[67]  Slack, E.; Balmer, M.L.; Fritz, J.H.; Hapfelmeier, S. Functional Flexibility of Intestinal IgA—Broadening the Fine Line. Front. Immunol. 2012, 3, 100.
[68]  Harris, N.L.; Spoerri, I.; Schopfer, J.F.; Nembrini, C.; Merky, P.; Massacand, J.; Urban, J.F., Jr.; Lamarre, A.; Burki, K.; Odermatt, B.; et al. Mechanisms of Neonatal Mucosal Antibody Protection. J. Immunol. 2006, 177, 6256–6262.
[69]  Peterson, D.A.; McNulty, N.P.; Guruge, J.L.; Gordon, J.I. IgA Response to Symbiotic Bacteria As a Mediator of Gut Homeostasis. Cell Host Microbe 2007, 2, 328–339, doi:10.1016/j.chom.2007.09.013.
[70]  Fernandez, M.I.; Pedron, T.; Tournebize, R.; Olivo-Marin, J.C.; Sansonetti, P.J.; Phalipon, A. Anti-Inflammatory Role for Intracellular Dimeric Immunoglobulin a by Neutralization of Lipopolysaccharide in Epithelial Cells. Immunity 2003, 18, 739–749, doi:10.1016/S1074-7613(03)00122-5.
[71]  Suzuki, K.; Meek, B.; Doi, Y.; Muramatsu, M.; Chiba, T.; Honjo, T.; Fagarasan, S. Aberrant Expansion of Segmented Filamentous Bacteria in IgA-Deficient Gut. Proc. Natl. Acad. Sci. USA 2004, 101, 1981–1986.
[72]  Hapfelmeier, S.; Lawson, M.A.; Slack, E.; Kirundi, J.K.; Stoel, M.; Heikenwalder, M.; Cahenzli, J.; Velykoredko, Y.; Balmer, M.L.; Endt, K.; et al. Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science 2010, 328, 1705–1709, doi:10.1126/science.1188454.
[73]  Tsuruta, T.; Inoue, R.; Nojima, I.; Tsukahara, T.; Hara, H.; Yajima, T. The Amount of Secreted IgA May Not Determine the Secretory IgA Coating Ratio of Gastrointestinal Bacteria. FEMS Immunol. Med. Microbiol. 2009, 56, 185–189, doi:10.1111/j.1574-695X.2009.00568.x.
[74]  van der Waaij, L.A.; Limburg, P.C.; Mesander, G.; van der Waaij, D. In Vivo IgA Coating of Anaerobic Bacteria in Human Faeces. Gut 1996, 38, 348–354, doi:10.1136/gut.38.3.348.
[75]  Mestecky, J.; Russell, M.W. Specific Antibody Activity, Glycan Heterogeneity and Polyreactivity Contribute to the Protective Activity of S-IgA at Mucosal Surfaces. Immunol. Lett. 2009, 124, 57–62, doi:10.1016/j.imlet.2009.03.013.
[76]  Brandtzaeg, P. Homeostatic Impact of Indigenous Microbiota and Secretory Immunity. Benef. Microbes. 2010, 1, 211–227, doi:10.3920/BM2010.0009.
[77]  Johansen, F.E.; Kaetzel, C.S. Regulation of the Polymeric Immunoglobulin Receptor and IgA Transport: New Advances in Environmental Factors That Stimulate PIgR Expression and Its Role in Mucosal Immunity. Mucosal. Immunol. 2011, 4, 598–602, doi:10.1038/mi.2011.37.
[78]  Bruno, M.E.; Frantz, A.L.; Rogier, E.W.; Johansen, F.E.; Kaetzel, C.S. Regulation of the Polymeric Immunoglobulin Receptor by the Classical and Alternative NF-KappaB Pathways in Intestinal Epithelial Cells. Mucosal. Immunol. 2011, 4, 468–478, doi:10.1038/mi.2011.8.
[79]  Roopenian, D.C.; Akilesh, S. FcRn: the Neonatal Fc Receptor Comes of Age. Nat. Rev. Immunol. 2007, 7, 715–725, doi:10.1038/nri2155.
[80]  Hase, K.; Kawano, K.; Nochi, T.; Pontes, G.S.; Fukuda, S.; Ebisawa, M.; Kadokura, K.; Tobe, T.; Fujimura, Y.; Kawano, S.; et al. Uptake Through Glycoprotein 2 of FimH(+) Bacteria by M Cells Initiates Mucosal Immune Response. Nature 2009, 462, 226–230, doi:10.1038/nature08529.
[81]  Neutra, M.R.; Kraehenbuhl, J.P. Transepithelial Transport and Mucosal Defence I: The Role of M Cells. Trends Cell Biol. 1992, 2, 134–138, doi:10.1016/0962-8924(92)90099-9.
[82]  Mantis, N.J.; Rol, N.; Corthesy, B. Secretory IgA's Complex Roles in Immunity and Mucosal Homeostasis in the Gut. Mucosal. Immunol. 2011, 4, 603–611, doi:10.1038/mi.2011.41.
[83]  Rey, J.; Garin, N.; Spertini, F.; Corthesy, B. Targeting of Secretory IgA to Peyer's Patch Dendritic and T Cells After Transport by Intestinal M Cells. J. Immunol. 2004, 172, 3026–3033.
[84]  Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322, doi:10.1126/science.284.5418.1318.
[85]  Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745, doi:10.1146/annurev.mi.49.100195.003431.
[86]  Bollinger, R.R.; Everett, M.L.; Palestrant, D.; Love, S.D.; Lin, S.S.; Parker, W. Human Secretory Immunoglobulin A May Contribute to Biofilm Formation in the Gut. Immunology 2003, 109, 580–587, doi:10.1046/j.1365-2567.2003.01700.x.
[87]  Bollinger, R.R.; Everett, M.L.; Wahl, S.D.; Lee, Y.H.; Orndorff, P.E.; Parker, W. Secretory IgA and Mucin-Mediated Biofilm Formation by Environmental Strains of Escherichia Coli: Role of Type 1 Pili. Mol. Immunol. 2006, 43, 378–387, doi:10.1016/j.molimm.2005.02.013.
[88]  Palestrant, D.; Holzknecht, Z.E.; Collins, B.H.; Parker, W.; Miller, S.E.; Bollinger, R.R. Microbial Biofilms in the Gut: Visualization by Electron Microscopy and by Acridine Orange Staining. Ultrastruct. Pathol. 2004, 28, 23–27.
[89]  Friman, V.; Adlerberth, I.; Connell, H.; Svanborg, C.; Hanson, L.A.; Wold, A.E. Decreased Expression of Mannose-Specific Adhesins by Escherichia Coli in the Colonic Microflora of Immunoglobulin A-Deficient Individuals. Infect. Immun. 1996, 64, 2794–2798.
[90]  Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Lactobacillus Reuteri Strains Reduce Incidence and Severity of Experimental Necrotizing Enterocolitis Via Modulation of TLR4 and NFkappaB Signaling in the Intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G608–G617, doi:10.1152/ajpgi.00266.2011.
[91]  Neu, J.; Walker, W.A. Necrotizing Enterocolitis. N. Engl. J. Med. 2011, 364, 255–264, doi:10.1056/NEJMra1005408.
[92]  Huang, J.S.; Bousvaros, A.; Lee, J.W.; Diaz, A.; Davidson, E.J. Efficacy of Probiotic Use in Acute Diarrhea in Children: a Meta-Analysis. Dig. Dis. Sci. 2002, 47, 2625–2634, doi:10.1023/A:1020501202369.
[93]  Rea, M.C.; Alemayehu, D.; Ross, R.P.; Hill, C. Gut Solutions to a Gut Problem: Bacteriocins, Probiotics and Bacteriophage for Control of Clostridium Difficile Infection. J. Med. Microbiol. 2013, 62, 1369–1378, doi:10.1099/jmm.0.058933-0.
[94]  Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819, doi:10.1152/ajpgi.00243.2009.
[95]  Hart, A.L.; Lammers, K.; Brigidi, P.; Vitali, B.; Rizzello, F.; Gionchetti, P.; Campieri, M.; Kamm, M.A.; Knight, S.C.; Stagg, A.J. Modulation of Human Dendritic Cell Phenotype and Function by Probiotic Bacteria. Gut 2004, 53, 1602–1609, doi:10.1136/gut.2003.037325.
[96]  Liu, Y.; Fatheree, N.Y.; Dingle, B.M.; Tran, D.Q.; Rhoads, M. Lactobacillus Reuteri DSM 17938 Changes the Frequency of Foxp3+ Regulatory T Cells in the Intestine and Mesenteric Lymph Node in Experimental Necrotizing Enterocolitis. PLoS One 2013, 8, e56547.
[97]  Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Human Derived Probiotic Lactobacillus Reuteri Strains Differentially Reduce Intestinal Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G1087–G1096, doi:10.1152/ajpgi.00124.2010.
[98]  Ng, S.C.; Hart, A.L.; Kamm, M.A.; Stagg, A.J.; Knight, S.C. Mechanisms of Action of Probiotics: Recent Advances. Inflamm. Bowel. Dis. 2009, 15, 300–310, doi:10.1002/ibd.20602.
[99]  Fukushima, Y.; Kawata, Y.; Hara, H.; Terada, A.; Mitsuoka, T. Effect of a Probiotic Formula on Intestinal Immunoglobulin A Production in Healthy Children. Int. J. Food Microbiol. 1998, 42, 39–44, doi:10.1016/S0168-1605(98)00056-7.
[100]  Kaila, M.; Isolauri, E.; Soppi, E.; Virtanen, E.; Laine, S.; Arvilommi, H. Enhancement of the Circulating Antibody Secreting Cell Response in Human Diarrhea by a Human Lactobacillus Strain. Pediatr. Res. 1992, 32, 141–144, doi:10.1203/00006450-199208000-00002.
[101]  Holscher, H.D.; Czerkies, L.A.; Cekola, P.; Litov, R.; Benbow, M.; Santema, S.; Alexander, D.D.; Perez, V.; Sun, S.; Saavedra, J.M.; et al. Bifidobacterium Lactis Bb12 Enhances Intestinal Antibody Response in Formula-Fed Infants: a Randomized, Double-Blind, Controlled Trial. JPEN J. Parenter. Enteral Nutr. 2012, 36, 106S–117S, doi:10.1177/0148607111430817.
[102]  Mohan, R.; Koebnick, C.; Schildt, J.; Mueller, M.; Radke, M.; Blaut, M. Effects of Bifidobacterium Lactis Bb12 Supplementation on Body Weight, Fecal PH, Acetate, Lactate, Calprotectin, and IgA in Preterm Infants. Pediatr. Res. 2008, 64, 418–422, doi:10.1203/PDR.0b013e318181b7fa.
[103]  Galdeano, C.M.; Perdigon, G. The Probiotic Bacterium Lactobacillus Casei Induces Activation of the Gut Mucosal Immune System Through Innate Immunity. Clin. Vaccine Immunol. 2006, 13, 219–226, doi:10.1128/CVI.13.2.219-226.2006.
[104]  Qiao, H.; Duffy, L.C.; Griffiths, E.; Dryja, D.; Leavens, A.; Rossman, J.; Rich, G.; Riepenhoff-Talty, M.; Locniskar, M. Immune Responses in Rhesus Rotavirus-Challenged BALB/c Mice Treated With Bifidobacteria and Prebiotic Supplements. Pediatr. Res. 2002, 51, 750–755, doi:10.1203/00006450-200206000-00015.
[105]  Shu, Q.; Gill, H.S. A Dietary Probiotic (Bifidobacterium Lactis HN019) Reduces the Severity of Escherichia Coli O157:H7 Infection in Mice. Med. Microbiol. Immunol. 2001, 189, 147–152, doi:10.1007/s430-001-8021-9.
[106]  Ogawa, M.; Shimizu, K.; Nomoto, K.; Takahashi, M.; Watanuki, M.; Tanaka, R.; Tanaka, T.; Hamabata, T.; Yamasaki, S.; Takeda, Y. Protective Effect of Lactobacillus Casei Strain Shirota on Shiga Toxin-Producing Escherichia Coli O157:H7 Infection in Infant Rabbits. Infect. Immun. 2001, 69, 1101–1108, doi:10.1128/IAI.69.2.1101-1108.2001.
[107]  Zhang, W.; Azevedo, M.S.; Gonzalez, A.M.; Saif, L.J.; Van, N.T.; Wen, K.; Yousef, A.E.; Yuan, L. Influence of Probiotic Lactobacilli Colonization on Neonatal B Cell Responses in a Gnotobiotic Pig Model of Human Rotavirus Infection and Disease. Vet. Immunol. Immunopathol. 2008, 122, 175–181, doi:10.1016/j.vetimm.2007.10.003.
[108]  Roller, M.; Rechkemmer, G.; Watzl, B. Prebiotic Inulin Enriched With Oligofructose in Combination With the Probiotics Lactobacillus Rhamnosus and Bifidobacterium Lactis Modulates Intestinal Immune Functions in Rats. J. Nutr. 2004, 134, 153–156.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413