全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

CD20 mAb-Mediated Complement Dependent Cytotoxicity of Tumor Cells is Enhanced by Blocking the Action of Factor I

DOI: 10.3390/antib2040598

Keywords: monoclonal antibody, complement, Factor I, rituximab, ofatumumab

Full-Text   Cite this paper   Add to My Lib

Abstract:

The CD20 mAbs, rituximab (RTX) and ofatumumab (OFA), have been used with success in the clinic in the treatment of B cell malignancies. These mAbs can eliminate B cells only by utilizing the body’s immune effector mechanisms, and there is considerable evidence that OFA is particularly effective at eliminating B cells by mediating complement dependent cytotoxicity (CDC). However, effector mechanisms such as complement can be exhausted or down-regulated. Therefore, several approaches are being investigated with the goal of increasing CDC mediated by these mAbs. We reported that when patients with chronic lymphocytic leukemia (CLL) are treated with RTX or with OFA, complement is rapidly activated on circulating, targeted CLL B cells. However, a substantial fraction of these cells escape CDC and clearance due to degradation of covalently deposited active C3b fragments to inactive fragments iC3b and C3d. This process is mediated by a plasma protease, Factor I. Therefore, a rational approach for increasing CDC would be to block this reaction by inhibiting Factor I with a neutralizing mAb. Indeed, we have demonstrated that use of neutralizing mAb A247, specific for factor I, significantly and substantially increases CD20 mAb-mediated CDC of both cell lines and of primary CLL cells in vitro.

References

[1]  Glennie, M.J.; French, R.; Cragg, M.S.; Taylor, R.P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 2007, 44, 3823–3837, doi:10.1016/j.molimm.2007.06.151.
[2]  Weiner, G.J. Rituximab: Mechanism of action. Sem. Hematol. 2010, 47, 115–123, doi:10.1053/j.seminhematol.2010.01.011.
[3]  Lim, S.H.; Beers, S.A.; French, R.R.; Johnson, P.W.M.; Glennie, M.J.; Cragg, M.S. Anti-CD20 monoclonal antibodies--historical and future perspectives. Haematologica 2010, 95, 135–143, doi:10.3324/haematol.2008.001628.
[4]  Boross, P.; Leusen, J.H.W. Mechanisms of action of CD20 antibodies. Am. J. Cancer Res. 2012, 2, 676–690.
[5]  Golay, J.; Introna, M. Mechanism of action of therapeutic monoclonal antibodies: Promises and pitfalls of in vitro and invivo assays. Arch. Biochem. Biophys. 2012, 526, 146–153, doi:10.1016/j.abb.2012.02.011.
[6]  Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nature 2012, 12, 278–287.
[7]  Goswami, S.; Wang, W.; Arakawa, T.; Ohtake, S. Developments and challenges for mAb-based therapeutics. Antibodies 2013, 2, 452–500, doi:10.3390/antib2030452.
[8]  Bologna, L.; Gotti, E.; da Roit, F.; Intermesoli, T.; Rambaldi, A.; Introna, M.; Golay, J. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J. Immunol. 2013, 190, 231–239.
[9]  Simpson, T.R.; Li, F.; Montalvo-Ortiz, W.; Sepulveda, M.A.; Bergerhoff, K.; Arce, F.; Roddie, C.; Henry, J.Y.; Yagita, H.; Wolchok, J.D.; et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 2013, 210, 1695–1710, doi:10.1084/jem.20130579.
[10]  Bulliard, Y.; Jolicoeur, R.; Windman, M.; Rue, S.M.; Ettenberg, S.; Knee, D.A.; Wilson, N.S.; Dranoff, G.; Brogdon, J.L. Activating Fc g receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 2013, 210, 1685–1693, doi:10.1084/jem.20130573.
[11]  Taylor, R.P.; Lindorfer, M.A. The role of complement in mAb-based therapies of cancer. Methods 2013, doi:10.1016/j.ymeth.2013.07.027.
[12]  Okroj, M.; Osterborg, A.; Blom, A.M. Effector mechanisms of anti-CD20 monoclonal antibodies in B cell malignancies. Cancer Treat. Rev. 2013, 39, 632–639, doi:10.1016/j.ctrv.2012.10.008.
[13]  Pawluczkowycz, A.W.; Beurskens, F.J.; Beum, P.V.; Lindorfer, M.A.; van de Winkel, J.G.J.; Parren, P.W.H.I.; Taylor, R.P. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): Considerably higher levels of CDC are induced by OFA than by RTX. J. Immunol. 2009, 183, 749–758, doi:10.4049/jimmunol.0900632.
[14]  Gong, Q.; Ou, Q.; Ye, S.; Lee, W.P.; Cornelius, J.; Diehl, L.; Lin, W.Y.; Hu, Z.; Lu, Y.; Chen, Y.; et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 2005, 174, 817–826.
[15]  Boross, P.; Jansen, J.H.M.; de Haij, S.; Beurskens, F.J.; van der Poel, C.E.; Bevaart, L.; Nederend, M.; Golay, J.; van de Winkel, J.G.J.; Parren, P.W.H.I.; et al. The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 2011, 96, 1822–1830, doi:10.3324/haematol.2011.047159.
[16]  Beurskens, F.J.; Lindorfer, M.A.; Farooqui, M.; Beum, P.V.; Engelberts, P.; Mackus, W.J.M.; Parren, P.W.H.I.; Wiestner, A.; Taylor, R.P. Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients. J. Immunol. 2012, 188, 3532–3541.
[17]  Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 2000, 6, 443–446.
[18]  Di Gaetano, N.; Cittera, E.; Nota, R.; Vecchi, A.; Grieco, V.; Scanziani, E.; Botto, M.; Introna, M.; Golay, J. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 2003, 171, 1581–1587.
[19]  Tedder, T.F.; Baras, A.; Xiu, Y. Fcg receptor-dependent effector mechanisms regulate CD19 and CD20 antibody immunotherapies for B lymphocyte malignancies and autoimmunity. Springer Semin. Immun. 2006, 28, 351–364, doi:10.1007/s00281-006-0057-9.
[20]  Macor, P.; Tripodo, C.; Zorzet, S.; Piovan, E.; Bossi, F.; Marzari, R.; Amadori, A.; Tedesco, F. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 2007, 67, 10556–10563.
[21]  Masuda, K.; Kubota, T.; Kaneko, E.; Iida, S.; Wakitani, M.; Kobayashi-Natsume, Y.; Kubota, A.; Shitara, K.; Nakamura, K. Enhanced binding affinity for FcgRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol. Immunol. 2007, 44, 3122–3131, doi:10.1016/j.molimm.2007.02.005.
[22]  Imai, M.; Ohta, R.; Varela, J.C.; Song, H.; Tomlinson, S. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement. Cancer Res. 2007, 67, 9535–9541, doi:10.1158/0008-5472.CAN-07-1690.
[23]  Li, B.; Shi, S.; Qian, W.; Zhao, L.; Zhang, D.; Hou, S.; Zheng, L.; Dai, J.; Zhao, J.; Wang, H.; et al. Development of novel tetravalent anti-CD20 antibodies with potent antitumor activity. Cancer Res. 2008, 68, 2400–2408, doi:10.1158/0008-5472.CAN-07-6663.
[24]  de Romeuf, C.; Dutertre, C.A.; Le Garff-Tavernier, M.; Fournier, N.; Gaucher, C.; Glacet, A.; Jorieux, S.; Bihoreau, N.; Behrens, C.K.; Beliard, R.; et al. Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgRIIIA/CD16. Br. J. Haematol. 2008, 140, 635–643, doi:10.1111/j.1365-2141.2007.06974.x.
[25]  Riaz, W.; Hernandez-Ilizaliturri, F.J.; Czuczman, M.S. Strategies to enhance rituximab anti-tumor activity in the treatment of CD20-positive B-cell neoplasms. Immunol. Res. 2009, 46, 192–205.
[26]  Li, B.; Zhao, L.; Guo, H.; Wang, C.; Zhang, X.; Wu, L.; Chen, L.T.Q.; Qian, W.; Wang, H.; Guo, Y. Characterization of a rituximab variant with potent antitumor activity against rituximab-resistant B-cell lymphoma. Blood 2009, 114, 5007–5015.
[27]  van Meerten, T.; Hagenbeek, A. Novel antibodies against follicular non-Hodgkin's lymphoma. Best Practice Res. Clin. Haematol. 2011, 24, 231–256, doi:10.1016/j.beha.2011.03.002.
[28]  Peipp, M.; van de Winkel, J.G.J.; Valerius, T. Molecular engineering to improve antibodies' anti-lymphoma activity. Best Practice Res. Clin. Haematol. 2011, 24, 217–229, doi:10.1016/j.beha.2011.03.004.
[29]  Lindorfer, M.A.; Wiestner, A.; Zent, C.S.; Taylor, R.P. Monoclonal antibody (mAb)-based cancer therapy: Is it time to reevaluate dosing strategies? Oncoimmunology 2012, 1, 959–961, doi:10.4161/onci.20368.
[30]  Elvington, M.; Huang, Y.; Morgan, B.P.; Ziao, F.; van Rooijen, N.; Atkinson, C.; Tomlinson, S. A targeted complement-dependent strategy to improve the outcome of mAb therapy, and characterization in a murine model of metastatic cancer. Blood 2012, 119, 6043–6051, doi:10.1182/blood-2011-10-383232.
[31]  Nimmerjahn, F.; Ravetch, J.V. Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immunity 2012, 12, 13–20.
[32]  Zent, C.S.; Wu, W.; Bowen, D.A.; Hanson, C.A.; Pettinger, A.M.; Shanafelt, T.D.; Kay, N.E.; Leis, J.F.; Call, T.G. Addition of granulocyte macrophage colony stimulating factor does not improve response to early treatment of high-risk chronic lymphocytic leukemia with alemtuzumab and rituximab. Leuk. Lymph. 2013, 54, 476–482, doi:10.3109/10428194.2012.717276.
[33]  Mamidi, S.; Cinci, M.; Hasmann, M.; Fehring, V.; Kirschfink, M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol. Oncol. 2013, 7, 580–594, doi:10.1016/j.molonc.2013.02.011.
[34]  Weiskopf, K.; Ring, A.M.; Ho, C.C.M.; Volkmer, J.P.; Levin, A.M.; Volkmer, A.K.; Ozkan, E.; Fernhoff, N.B.; van de Rijn, M.; Weissman, I.L.; et al. Engineered SIRPa variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013, 341, 88–91, doi:10.1126/science.1238856.
[35]  Koski, C.; Ramm, L.; Hammer, C.; Mayer, M.; Shin, M. Cytolysis of nucleated cells by complement: Cell death displays multi-hit characteristics. Proc. Natl. Acad. Sci. USA 1983, 80, 3816–3820.
[36]  Carney, D.F.; Hammer, C.H.; Shin, M.L. Elimination of terminal complement complexes in the plasma membrane of nucleated cells: influence of extracellular Ca2+ and association with cellular Ca2+. J. Immunol. 1986, 137, 263–270.
[37]  Kim, S.; Carney, D.F.; Hammer, C.H.; Shin, M.L. Nucleated cell killing by complement: Effects of C5b-9 channel size and extracellular Ca-2+ on the lytic process. J. Immunol. 1987, 138, 1530–1536.
[38]  Reiter, Y.; Ciobotariu, A.; Jones, J.; Morgan, B.P.; Fishelson, Z. Complement membrane attack complex, perforin, and bacterial exotoxins induce in K562 cells calcium-dependent cross-protection from lysis. J. Immunol. 1995, 155, 2203–2210.
[39]  Helmy, K.Y.; Katschke, K.J.; Gorgani, N.N.; Kljavin, N.M.; Elliott, J.M.; Diehl, L.; Scales, S.J.; Ghilardi, N.; van Lookeren Campagne, M. CRIg: A macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 2006, 124, 915–927.
[40]  He, J.Q.; Wiesmann, C.; van Lookeren Campagne, M. A role of macrophage complement receptor CR1g in immune clearance and inflammation. Mol. Immunol. 2008, 45, 4041–4047, doi:10.1016/j.molimm.2008.07.011.
[41]  Lindorfer, M.A.; Kohl, J.; Taylor, R.P. Interactions between the complement system and Fcg receptors. In Antibody Fc: Linking Adaptive and Innate Immunity; Ackerman, M.E., Nimmerjahn, F., Eds.; Elsevier: Philadelphia, PA, USA, 2014.
[42]  Morgan, B.P.; Harris, C.L. Complement Regulatory Proteins; Academic Press: San Diego, CA, USA, 1999.
[43]  Fishelson, Z.; Donin, N.; Zell, S.; Schultz, S.; Kirschfink, M. Obstacles to cancer immunotherapy: Expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol. Immunol. 2003, 40, 109–123, doi:10.1016/S0161-5890(03)00112-3.
[44]  Zipfel, P.F.; Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 2009, 9, 729–740.
[45]  Dunkelberger, J.R.; Song, W.C. Role and mechanism of action of complement in regulating T cell immunity. Mol. Immunol. 2010, 47, 2176–2186, doi:10.1016/j.molimm.2010.05.008.
[46]  Ehrnthaller, C.; Ignatius, A.; Gebhard, F.; Huber-Lang, M. New insights of an old defense system: Structure, function and clinical relevance of the complement system. Mol. Med. 2011, 17, 317–329.
[47]  Nilsson, S.C.; Sim, R.B.; Lea, S.M.; Fremeaux-Bacchi, V.; Blom, A.M. Complement factor I in health and disease. Mol. Immunol. 2011, 48, 1611–1620, doi:10.1016/j.molimm.2011.04.004.
[48]  Kolev, M.; Towner, L.; Donev, R. Complement in cancer and cancer immunotherapy. Arch. Immunol. Ther. Exp. 2011, 59, 407–419, doi:10.1007/s00005-011-0146-x.
[49]  Nilsson, S.C.; Nita, I.; Mansson, L.; Groeneveld, T.W.L.; Trouw, L.A.; Villoutreix, B.O.; Blom, A.M. Analysis of binding sites on complement Factor I that are required for its activity. J. Biol. Chem. 2010, 285, 6235–6245.
[50]  Roversi, P.; Johnson, S.; Caesar, J.J.; McLean, F.; Leath, K.J.; Tsiftsoglou, S.A.; Morgan, B.P.; Harris, C.L.; Sim, R.B.; Lea, S.M. Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc. Natl. Acad. Sci. USA 2011, 108, 12839–12844, doi:10.1073/pnas.1102167108.
[51]  Beum, P.V.; Lindorfer, M.A.; Peek, E.M.; Stukenberg, P.T.; de Weers, M.; Beurskens, F.J.; Parren, P.W.H.I.; van de Winkel, J.G.J.; Taylor, R.P. Penetration of antibody-opsonized cells by the membrane attack complex of complement promotes Ca2+ influx and induces streamers. Eur. J. Immunol. 2011, 41, 2436–2446, doi:10.1002/eji.201041204.
[52]  Okroj, M.; Holmquist, E.; King, B.C.; Blom, A.M. Functional analyses of complement convertases using C3 and C5-depleted sera. PLoS One 2012, 7, e47245.
[53]  Horl, S.; Banki, Z.; Huber, G.; Ejaz, A.; Windisch, D.; Muellauer, B.; Willenbacher, E.; Steurer, M.; Stoiber, H. Reduction of complement factor H binding to CLL cells improves the induction of rituximab-mediated complement-dependent cytotoxicity. Leukemia 2013, 27, 2200–2208, doi:10.1038/leu.2013.169.
[54]  Horl, S.; Banki, Z.; Huber, G.; Ejaz, A.; Mullauer, B.; Willenbacher, E.; Steurer, M.; Stoiber, H. Complement factor H-derived short consensus repeat 18-20 enhanced complement-dependent cytotoxicity of Ofatumumab on chronic lymphocytic leukemia cells. Haematologica 2013, doi:10.3324/haematol.2013.089615.
[55]  Kennedy, A.D.; Solga, M.D.; Schuman, T.A.; Chi, A.W.; Lindorfer, M.A.; Sutherland, W.M.; Foley, P.L.; Taylor, R.P. An anti-C3b(i) mAb enhances complement activation, C3b(i) deposition, and killing of CD20+ cells by Rituximab. Blood 2003, 101, 1071–1079, doi:10.1182/blood-2002-03-0876.
[56]  Kennedy, A.D.; Beum, P.V.; Solga, M.D.; DiLillo, D.J.; Lindorfer, M.A.; Hess, C.E.; Densmore, J.J.; Williams, M.E.; Taylor, R.P. Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J. Immunol. 2004, 172, 3280–3288.
[57]  Teeling, J.L.; French, R.R.; Cragg, M.S.; van den Brakel, J.; Pluyter, M.; Huang, H.; Chan, C.; Parren, P.W.; Hack, C.E.; Dechant, M.; et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin's lymphomas. Blood 2004, 104, 1793–1800, doi:10.1182/blood-2004-01-0039.
[58]  Beum, P.V.; Peek, E.M.; Lindorfer, M.A.; Beurskens, F.J.; Engelberts, P.J.; Parren, W.H.I.; van de Winkel, J.G.J.; Taylor, R.P. Loss of CD20 and bound CD20 antibody from opsonized B cells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressing effector cells than direct internalization by the B cells. J. Immunol. 2011, 187, 3438–3447, doi:10.4049/jimmunol.1101189.
[59]  Bhat, R.; Watzl, C. Serial killing of tumor cells by human natural killer cells—Enhancement by therapeutic antibodies. PLoS One 2007, 2, e326, doi:10.1371/journal.pone.0000326.
[60]  Berdeja, J.G.; Hess, A.; Lucas, D.M.; O'Donnell, P.; Ambinder, R.F.; Diehl, L.F.; Carter-Brookins, D.; Newton, S.; Flinn, I.W. Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves antibody-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clin. Cancer Res. 2007, 13, 2392–2399, doi:10.1158/1078-0432.CCR-06-1860.
[61]  Ge, X.; Wu, L.H.W.; Fernandes, S.; Wang, C.; Li, X.; Brown, J.R.; Zin, X. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin. Cancer Res. 2011, 17, 6702–6711, doi:10.1158/1078-0432.CCR-11-0647.
[62]  Teeling, J.L.; Mackus, W.J.M.; Wiegman, L.J.J.M.; van den Brakel, J.H.N.; Bees, S.A.; French, R.R.; van Meerten, T.; Ebeling, S.; Vink, T.; Slootstra, J.W.; et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol. 2006, 177, 362–371.
[63]  Baig, N.A.; Taylor, R.P.; Lindorfer, M.A.; Church, A.K.; LaPlant, B.R.; Pavey, E.S.; Nowakowski, G.S.; Zent, C.S. Complement dependent cytotoxicity (CDC) in chronic lymphocytic leukemia (CLL): Ofatumumab enhances alemtuzumab CDC and reveals cells resistant to activated complement. Leuk. Lymph. 2012, 53, 2218–2227, doi:10.3109/10428194.2012.681657.
[64]  Wierda, W.; Kipps, T.; Durig, J.; Griskevicius, L.; Stilgenbauer, S.; Mayer, J.S.L.; Hess, G.; Griniute, R.; Hernandez-Ilizaliturri, F.J.; Padmanabhan, S.; et al. Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood 2011, 117, 6450–6458, doi:10.1182/blood-2010-12-323980.
[65]  Beum, P.V.; Kennedy, A.D.; Williams, M.E.; Lindorfer, M.A.; Taylor, R.P. The shaving reaction: Rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes. J. Immunol. 2006, 176, 2600–2609.
[66]  Estrov, Z.; Talpaz, M.; Ku, S.; Harris, D.; Van, Q.; Beran, M.; Hirsch-Ginsberg, C.; Huh, Y.; Yee, G.; Kurzrock, R. Z-138: A new mature B-cell acute lymphoblastic leukemia cell line from a patient with transformed chronic lymphocytic leukemia. Leuk. Res. 1998, 22, 341–353, doi:10.1016/S0145-2126(97)00191-4.
[67]  Lindorfer, M.A.; Jinivizian, H.B.; Foley, P.L.; Kennedy, A.D.; Solga, M.D.; Taylor, R.P. The B cell complement receptor 2 transfer reaction. J. Immunol. 2003, 170, 3671–3678.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413