全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

In Vivo Secretion of Bispecific Antibodies Recruiting Lymphocytic Effector Cells

DOI: 10.3390/antib2030415

Keywords: bispecific antibodies, in vivo secretion, gene therapy, cell-based therapy, immunotherapeutic organoids, immunotherapeutic neovessels

Full-Text   Cite this paper   Add to My Lib

Abstract:

Engineered Fc-lacking bispecific antibodies have shown an exceptionally high potency for recruiting lymphocyte effector cells and enhancing antitumor activity, which is under evaluation in several clinical trials. However, current treatment regimens raise some issues that should be considered, such as the high cost of clinical-grade bispecific antibodies and the achievement of sustained therapeutic plasma levels. The use of gene transfer methods may circumvent problems related to large-scale production and purification, and result in sustained therapeutic plasma concentrations of the Fc-lacking bispecific antibodies. In fact, terminally differentiated cells and non-terminally differentiated cells can be genetically modified to secrete functionally active bispecific antibodies exerting clear anti-tumor effects. This review highlights the relevance of different promising strategies for in vivo delivery of therapeutic bispecific antibodies.

References

[1]  Cuesta, A.M.; Sainz-Pastor, N.; Bonet, J.; Oliva, B.; álvarez-Vallina, L. Multivalent antibodies: When design surpasses evolution. Trends Biotechnol. 2010, 28, 355–362, doi:10.1016/j.tibtech.2010.03.007.
[2]  álvarez-Vallina, L. Genetic approaches for antigen-selective cell therapy. Curr. Gene Ther. 2001, 1, 385–397, doi:10.2174/1566523013348418.
[3]  Kontermann, R. Dual targeting strategies with bispecific antibodies. MAbs 2012, 4, 182–197, doi:10.4161/mabs.4.2.19000.
[4]  Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 2001, 1, 118–129, doi:10.1038/35101072.
[5]  Muller, D.; Kontermann, R.E. Bispecific antibodies for cancer immunotherapy: Current perspectives. BioDrugs 2010, 24, 89–98, doi:10.2165/11530960-000000000-00000.
[6]  Sanz, L.; Cuesta, A.M.; Compte, M.; álvarez-Vallina, L. Antibody engineering: Facing new challenges in cancer therapy. Acta Pharmacol. Sin. 2005, 26, 641–648, doi:10.1111/j.1745-7254.2005.00135.x.
[7]  Dhimolea, E.; Reichert, J.M. World Bispecific Antibody Summit, September 27-28, 2011, Boston, MA. MAbs 2012, 4, 4–13, doi:10.4161/mabs.4.1.18821.
[8]  Linke, R.; Klein, A.; Seimetz, D. Catumaxomab: clinical development and future directions. MAbs 2010, 2, 129–136, doi:10.4161/mabs.2.2.11221.
[9]  Sebastian, M.; Passlick, B.; Friccius-Quecke, H.; Jager, M.; Lindhofer, H.; Kanniess, F.; Wiewrodt, R.; Thiel, E.; Buhl, R.; Schmittel, A. Treatment of non-small cell lung cancer patients with the trifunctional monoclonal antibody catumaxomab (anti-EpCAM x anti-CD3): A phase I study. Cancer Immunol. Immunother. 2007, 56, 1637–1644, doi:10.1007/s00262-007-0310-7.
[10]  Ghaderi, D.; Zhang, M.; Hurtado-Ziola, N.; Varki, A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 2012, 28, 147–175, doi:10.5661/bger-28-147.
[11]  Mack, M.; Riethmuller, G.; Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. USA 1995, 92, 7021–7025, doi:10.1073/pnas.92.15.7021.
[12]  Holliger, P.; Winter, G. Engineering bispecific antibodies. Curr. Opin. Biotechnol. 1993, 4, 446–449, doi:10.1016/0958-1669(93)90010-T.
[13]  Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136, doi:10.1038/nbt1142.
[14]  Chames, P.; Baty, D. Bispecific antibodies for cancer therapy: The light at the end of the tunnel? MAbs 2009, 1, 539–547, doi:10.4161/mabs.1.6.10015.
[15]  Bargou, R.; Leo, E.; Zugmaier, G.; Klinger, M.; Goebeler, M.; Knop, S.; Noppeney, R.; Viardot, A.; Hess, G.; Schuler, M.; et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008, 321, 974–977, doi:10.1126/science.1158545.
[16]  Muller, D.; Karle, A.; Meissburger, B.; Hofig, I.; Stork, R.; Kontermann, R.E. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem. 2007, 282, 12650–12660, doi:10.1074/jbc.M700820200.
[17]  Stork, R.; Campigna, E.; Robert, B.; Muller, D.; Kontermann, R.E. Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J. Biol. Chem. 2009, 284, 25612–25619.
[18]  Libon, C.; Corvaia, N.; Haeuw, J.F.; Nguyen, T.N.; Stahl, S.; Bonnefoy, J.Y.; Andreoni, C. The serum albumin-binding region of streptococcal protein G (BB) potentiates the immunogenicity of the G130-230 RSV-A protein. Vaccine 1999, 17, 406–414, doi:10.1016/S0264-410X(98)00198-4.
[19]  Sanz, L.; Blanco, B.; álvarez-Vallina, L. Antibodies and gene therapy: Teaching old 'magic bullets' new tricks. Trends Immunol. 2004, 25, 85–91, doi:10.1016/j.it.2003.12.001.
[20]  Samaranayake, H.; Wirth, T.; Schenkwein, D.; Raty, J.K.; Yla-Herttuala, S. Challenges in monoclonal antibody-based therapies. Ann. Med. 2009, 41, 322–331, doi:10.1080/07853890802698842.
[21]  Sanchez-Martin, D.; Sanz, L.; álvarez-Vallina, L. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins. Curr. Opin. Biotechnol. 2011, 22, 924–930, doi:10.1016/j.copbio.2011.03.001.
[22]  Sanz, L.; Compte, M.; Guijarro-Munoz, I.; álvarez-Vallina, L. Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Ther. 2012, 19, 1–7, doi:10.1038/gt.2011.68.
[23]  Blanco, B.; Holliger, P.; Vile, R.G.; álvarez-Vallina, L. Induction of human T lymphocyte cytotoxicity and inhibition of tumor growth by tumor-specific diabody-based molecules secreted from gene-modified bystander cells. J. Immunol. 2003, 171, 1070–1077.
[24]  Rosenberg, S.A.; Restifo, N.P.; Yang, J.C.; Morgan, R.A.; Dudley, M.E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 2008, 8, 299–308, doi:10.1038/nrc2355.
[25]  Restifo, N.P.; Dudley, M.E.; Rosenberg, S.A. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat. Rev. Immunol. 2012, 12, 269–281, doi:10.1038/nri3191.
[26]  Compte, M.; Blanco, B.; Serrano, F.; Cuesta, A.M.; Sanz, L.; Bernad, A.; Holliger, P.; álvarez-Vallina, L. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther. 2007, 14, 380–388, doi:10.1038/sj.cgt.7701021.
[27]  Shah, K. Mesenchymal stem cells engineered for cancer therapy. Adv. Drug Deliv. Rev. 2012, 64, 739–748, doi:10.1016/j.addr.2011.06.010.
[28]  Studeny, M.; Marini, F.C.; Dembinski, J.L.; Zompetta, C.; Cabreira-Hansen, M.; Bekele, B.N.; Champlin, R.E.; Andreeff, M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 2004, 96, 1593–1603, doi:10.1093/jnci/djh299.
[29]  Aboody, K.S.; Najbauer, J.; Danks, M.K. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther. 2008, 15, 739–752, doi:10.1038/gt.2008.41.
[30]  Frank, R.T.; Najbauer, J.; Aboody, K.S. Concise review: Stem cells as an emerging platform for antibody therapy of cancer. Stem Cells 2010, 28, 2084–2087, doi:10.1002/stem.513.
[31]  Meisel, R.; Zibert, A.; Laryea, M.; Gobel, U.; Daubener, W.; Dilloo, D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004, 103, 4619–4621, doi:10.1182/blood-2003-11-3909.
[32]  Sato, K.; Ozaki, K.; Oh, I.; Meguro, A.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 2007, 109, 228–234, doi:10.1182/blood-2006-02-002246.
[33]  Sanz, L.; Santos-Valle, P.; Alonso-Camino, V.; Salas, C.; Serrano, A.; Vicario, J.L.; Cuesta, A.M.; Compte, M.; Sanchez-Martin, D.; álvarez-Vallina, L. Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc. Res. 2008, 75, 308–314, doi:10.1016/j.mvr.2007.11.007.
[34]  Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449, 557–563, doi:10.1038/nature06188.
[35]  Compte, M.; Cuesta, A.M.; Sanchez-Martin, D.; onso-Camino, V.; Vicario, J.L.; Sanz, L.; álvarez-Vallina, L. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 2009, 27, 753–760, doi:10.1634/stemcells.2008-0831.
[36]  Descamps, V.; Blumenfeld, N.; Perricaudet, M.; Beuzard, Y.; Kremer, E.J. Organoids direct systemic expression of erythropoietin in mice. Gene Ther. 1995, 2, 411–417.
[37]  Eliopoulos, N.; Al-Khaldi, A.; Crosato, M.; Lachapelle, K.; Galipeau, J. A neovascularized organoid derived from retrovirally engineered bone marrow stroma leads to prolonged in vivo systemic delivery of erythropoietin in nonmyeloablated, immunocompetent mice. Gene Ther. 2003, 10, 478–489, doi:10.1038/sj.gt.3301919.
[38]  Stagg, J.; Lejeune, L.; Paquin, A.; Galipeau, J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum. Gene Ther. 2004, 15, 597–608, doi:10.1089/104303404323142042.
[39]  Eliopoulos, N.; Francois, M.; Boivin, M.N.; Martineau, D.; Galipeau, J. Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res. 2008, 68, 4810–4818.
[40]  Yokoo, T.; Fukui, A.; Matsumoto, K.; Ohashi, T.; Sado, Y.; Suzuki, H.; Kawamura, T.; Okabe, M.; Hosoya, T.; Kobayashi, E. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells. Transplantation 2008, 85, 1654–1658, doi:10.1097/TP.0b013e318173a35d.
[41]  Wang, N.; Fallavollita, L.; Nguyen, L.; Burnier, J.; Rafei, M.; Galipeau, J.; Yakar, S.; Brodt, P. Autologous bone marrow stromal cells genetically engineered to secrete an igf-I receptor decoy prevent the growth of liver metastases. Mol. Ther. 2009, 17, 1241–1249, doi:10.1038/mt.2009.82.
[42]  Kasuya, K.; Shimazu, M.; Suzuki, M.; Itoi, T.; Aoki, T.; Tsuchida, A. Bispecific anti-HER2 and CD16 single-chain antibody production prolongs the use of stem cell-like cell transplantation against HER2-overexpressing cancer. Int. J. Mol. Med. 2010, 25, 209–215.
[43]  Squinto, S.P.; Madri, J.A.; Kennedy, S.; Springhorn, J. The ENCEL system: A somatic cell protein delivery system. In Vivo 1994, 8, 771–780.
[44]  Wei, Y.; Li, J.; Wagner, T.E. Long-term expression of human growth hormone (hGH) in mice containing allogeneic yolk sac cell derived neovascular implants expressing hGH. Stem Cells 1996, 14, 232–238.
[45]  Matsui, H.; Shibata, M.; Brown, B.; Labelle, A.; Hegadorn, C.; Andrews, C.; Hebbel, R.P.; Galipeau, J.; Hough, C.; Lillicrap, D. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 2007, 25, 2660–2669, doi:10.1634/stemcells.2006-0699.
[46]  Koike, N.; Fukumura, D.; Gralla, O.; Au, P.; Schechner, J.S.; Jain, R.K. Tissue engineering: Creation of long-lasting blood vessels. Nature 2004, 428, 138–139, doi:10.1038/428138a.
[47]  Melero-Martin, J.M.; Khan, Z.A.; Picard, A.; Wu, X.; Paruchuri, S.; Bischoff, J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007, 109, 4761–4768, doi:10.1182/blood-2006-12-062471.
[48]  Melero-Martin, J.M.; De Obaldia, M.E.; Kang, S.Y.; Khan, Z.A.; Yuan, L.; Oettgen, P.; Bischoff, J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 2008, 103, 194–202, doi:10.1161/CIRCRESAHA.108.178590.
[49]  Au, P.; Tam, J.; Fukumura, D.; Jain, R.K. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 2008, 111, 4551–4558, doi:10.1182/blood-2007-10-118273.
[50]  álvarez-Vallina, L.; Sanz, L. The therapeutic potential of engineered human neovessels for cell-based gene therapy. Expert Opin. Biol. Ther. 2011, 11, 67–76, doi:10.1517/14712598.2011.538378.
[51]  Compte, M.; onso-Camino, V.; Santos-Valle, P.; Cuesta, A.M.; Sanchez-Martin, D.; Lopez, M.R.; Vicario, J.L.; Salas, C.; Sanz, L.; álvarez-Vallina, L. Factory neovessels: Engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther. 2010, 17, 745–751, doi:10.1038/gt.2010.33.
[52]  Lin, R.Z.; Dreyzin, A.; Aamodt, K.; Li, D.; Jaminet, S.C.; Dudley, A.C.; Melero-Martin, J.M. Induction of erythropoiesis using human vascular networks genetically engineered for controlled erythropoietin release. Blood 2011, 118, 5420–5428, doi:10.1182/blood-2011-08-372946.
[53]  Lohr, M.; Hoffmeyer, A.; Kroger, J.; Freund, M.; Hain, J.; Holle, A.; Karle, P.; Knofel, W.T.; Liebe, S.; Muller, P.; et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 2001, 357, 1591–1592, doi:10.1016/S0140-6736(00)04749-8.
[54]  Cirone, P.; Bourgeois, J.M.; Chang, P.L. Antiangiogenic cancer therapy with microencapsulated cells. Hum. Gene Ther. 2003, 14, 1065–1077, doi:10.1089/104303403322124783.
[55]  Goren, A.; Dahan, N.; Goren, E.; Baruch, L.; Machluf, M. Encapsulated human mesenchymal stem cells: A unique hypoimmunogenic platform for long-term cellular therapy. FASEB J. 2010, 24, 22–31, doi:10.1096/fj.09-131888.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413