全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

Development of an Antibody for Detection of Rhamnolipids Characterized as a Major Bacterial Virulence Factor

DOI: 10.3390/antib2030501

Keywords: virulence, rhamnolipids, antibody, Thermus thermophilus

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rhamnolipids (RLs), the glycolipidic biosurfactants found initially as exoproducts of the opportunistic pathogen Pseudomonas aeruginosa, are characterized as virulence factors contributing to its pathogenesis infections. However, RLs are also produced by various bacterial species. They consist of a gluconic part, usually containing one or two rhamnoses, and a lipid part, containing one or two hydroxy-fatty acids. In this study, we present both the isolation of RLs from bacterial cultures of the non-pathogenic bacterium Thermus thermophilus as well as the development of the rabbit antibody directed against them. The antibody was titrated and evaluated, in respect of its recognition selectivity. Between both RLs constituents, it specifically recognized only the hydroxydecanoic acid between the fatty acids tested, contrary to rhamnose. The potential of the antibody to recognize both purified RLs and RLs present in crude extracellular media produced by T. thermophilus and Escherichia coli cultures, is evidenced by Dot Blot immuno-reaction. The development of this antibody is addressed in detail, as the sensitive analytical technique, and its potential use would facilitate the implementation of rhamnolipids’ detection, or may be a useful and promising tool for determining these microbial secondary metabolites and virulence factors secreted in extracellular culture media or in biological fluids during infections.

References

[1]  Maier, R.M.; Soberón-Chávez, G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 2000, 54, 625–633, doi:10.1007/s002530000443.
[2]  Vatsa, P.; Sanchez, L.; Clement, C.; Baillieul, F.; Dorey, S. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int. J. Mol. Sci. 2010, 11, 5095–5108, doi:10.3390/ijms11125095.
[3]  Ochsner, U.A.; Reiser, J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 1995, 92, 6424–6428, doi:10.1073/pnas.92.14.6424.
[4]  Abdel-Mawgoud, A.M.; Lépine, F.; Déziel, E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010, 86, 1323–1336, doi:10.1007/s00253-010-2498-2.
[5]  Abdel-Mawgoud, A.M.; Hausmann, R.; Lépine, F.; Muller, M.M.; Déziel, E. Rhamnolipids: Detection, analysis, biosynthesis, genetic regulation and bioengineering of production. Biosurf. Microbiol. Monog. 2011, 20, 13–55, doi:10.1007/978-3-642-14490-5_2.
[6]  Zulianello, L.; Canard, C.; K?hler, T.; Caille, D.; Lacroix, J.S.; Meda, P. Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect. Immun. 2006, 74, 3134–3147, doi:10.1128/IAI.01772-05.
[7]  Kownatzki, R.; Tümmler, B.; D?ring, G. Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet 1987, 1, 1026–1027, doi:10.1016/S0140-6736(87)92286-0.
[8]  Stutts, M.J.; Schwab, J.H.; Chen, M.G.; Knowles, M.R.; Boucher, R.C. Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am. Rev. Respiratory Dis. 1986, 134, 17–21.
[9]  Cabrera-Valladares, N.; Richardson, A.P.; Olvera, C.; Trevi?o, L.G.; Déziel, E.; Lépine, F.; Soberón-Chávez, G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl. Microbiol. Biotechnol. 2006, 73, 187–194, doi:10.1007/s00253-006-0468-5.
[10]  Pantazaki, A.; Dimopoulou, M.; Simou, O.; Pritsa, A. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl. Microbiol. Biotechnol. 2010, 88, 939–951, doi:10.1007/s00253-010-2802-1.
[11]  Pantazaki, A.A.; Papaneophytou, C.P.; Lambropoulou, D.A. Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 2011, 1, 17–30, doi:10.1186/2191-0855-1-17.
[12]  Rezanka, T.; Siristova, L.; Sigler, K. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 2011, 15, 697–709, doi:10.1007/s00792-011-0400-5.
[13]  Fujita, K.; Akino, T.; Yoshioka, H. Characteristics of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect. Immun. 1988, 56, 1385–1387.
[14]  Johnson, M.K.; Boese-Marrazzo, D. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect. Immun. 1980, 29, 1028–1033.
[15]  Piljac, G.; Piljac, V. Immunological activity of rhamnolipids. United States—Patent Application Publication 5466675, 1995.
[16]  H?ussler, S.; Rohde, M.; von Neuhoff, N.; Nimtz, M.; Steinmetz, I. Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect. Immun. 2003, 71, 2970–2975.
[17]  H?ussler, S.; Nimtz, M.; Domke, T.; Wray, V.; Steinmetz, I. Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect. Immun. 1998, 66, 1588–1593.
[18]  Sánchez, M.; Aranda, F.J.; Teruel, J.A.; Espuny, M.J.; Marqués, A.; Manresa, A.; Ortiz, A. Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J. Colloid Interf. Sci. 2010, 341, 240–247.
[19]  McClure, C.D.; Schiller, N.L. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte derived macrophages. J. Leukoc. Biol. 1992, 51, 97–102.
[20]  Jensen, P.O.; Bjarnsholt, T.; Phipps, R.; Rasmussen, T.B.; Calum, H.; Christoffersen, L. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 2007, 153, 1329–1338.
[21]  Van Gennip, M.; Christensen, L.D.; Alhede, M.; Phipps, R.; Jensen, P.?.; Christophersen, L.; Pamp, S.J.; Moser, C.; Mikkelsen, P.J.; Koh, A.Y.; et al. Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 2009, 117, 537–546.
[22]  Sotirova, A.; Spasova, D.; Vasileva-Tonkova, E.; Galabova, D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol. Res. 2009, 164, 297–303.
[23]  Sotirova, A.V.; Spasova, D.I.; Galabova, D.N; Karpenko, E.; Shulga, A. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr. Microbiol. 2008, 56, 639–644.
[24]  Voutquenne, L. Saponins and hemolytic activity. Saponins and glycosides from five species of Sapindaceae. Ann. Pharm. Fr. 2001, 59, 407–414.
[25]  Stipcevic, T.; Piljac, T.; Isseroff, R.R. Di-rhamnolipid from Pseudomonas aeruginosa displays differential effects on human keratinocyte and fibroblast cultures. J. Dermatol. Sci. 2005, 40, 141–143.
[26]  Piljac, G.; Piljac, V. Pharmaceutical preparation based on rhamnolipid. US Patent 1995.
[27]  Al-Tahhan, R.A.; Sandrin, T.R.; Bodour, A.A.; Maier, R.M. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol. 2000, 66, 3262–3268, doi:10.1128/AEM.66.8.3262-3268.2000.
[28]  Irie, Y.; O'Toole, G.A.; Yuk, M.H. Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol. Lett. 2005, 250, 237–243, doi:10.1016/j.femsle.2005.07.012.
[29]  Haruma, M.; Tanaka, M.; Sugimoto, T.; Kojima, R.; Suzuki, Y.; Konoshima, T.; Kozuka, M.; Ito, K. Alteration of Na+ permeability in human erythrocytes as studied by 23Na-NMR and inhibition of the kidney Na+, K+-ATPase activities with saponins: Interaction of gleditsia saponins with human erythrocyte membranes. Bioorg. Med. Chem. Lett. 1995, 5, 827–830, doi:10.1016/0960-894X(95)00121-9.
[30]  Peuchant, E.; Salles, C.; Vallot, C.; Wone, C.; Jensen, R. Increase of erythrocyte resistance to hemolysis and modification of membrane lipids induced by hemodialysis. Clin. Chim. Acta 1988, 178, 271–282, doi:10.1016/0009-8981(88)90235-5.
[31]  Pantazaki, A.A.; Choli-Papadopoulou, T. On the Thermus thermophilus HB8 potential pathogenicity triggered from rhamnolipids secretion: morphological alterations and cytotoxicity induced on fibroblastic cell line. Amino Acids 2012, 42, 1913–1926, doi:10.1007/s00726-011-0917-z.
[32]  Chwalek, M.; Lalun, N.; Bobichon, H.; Plé, K.; Voutquenne-Nazabadioko, L. Structure-activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim. Biophys. Acta 2006, 1760, 1418–1427, doi:10.1016/j.bbagen.2006.05.004.
[33]  Zhu, K.; Rock, C.O. RhlA converts b-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the b-hydroxydecanoyl-b-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J. Bacteriol. 2008, 190, 3147–3154, doi:10.1128/JB.00080-08.
[34]  Read, R.C.; Roberts, P.; Munro, N.; Rutman, A.; Hastie, A.; Shryock, T.; Hall, R.; McDonald-Gibson, W.; Lund, V.; Taylor, G. Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J. Appl. Physiol. 1992, 72, 2271–2277.
[35]  Meyer-Hoffert, U.; Zimmermann, A.; Czapp, M.; Bartels, J.; Koblyakova, Y.; Gl?ser, R.; Schr?der, J.M.; Gerstel, U. Flagellin delivery by Pseudomonas aeruginosa rhamnolipids induces the antimicrobial protein psoriasin in human skin. PLoS One 2011, 6, e16433, doi:10.1371/journal.pone.0016433.
[36]  Syldatk, C.; Lang, S.; Matulovic, V.; Wagner, F. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2847. Z Naturforsch 1985, 40c, 61–67.
[37]  Déziel, E.; Lépine, F.; Dennie, D.; Boismenu, D.; Mamer, O.A.; Villemur, R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1999, 1440, 244–252, doi:10.1016/S1388-1981(99)00129-8.
[38]  Koch, A.K.; Kappeli, O.; Ficher, A.; Reiser, J. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 1991, 173, 4212–4219.
[39]  Pearson, J.P.; Pesci, E.C.; Iglewski, B.H. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 1997, 179, 5756–5767.
[40]  Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685, doi:10.1038/227680a0.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413