全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2013 

Role and Redirection of IgE against Cancer

DOI: 10.3390/antib2020371

Keywords: IgE, FceRI, CD23, ADCC, cancer, immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

IgE is a highly elusive antibody class, yet a tremendously powerful elicitor of immune reactions. Despite huge efforts spent on the characterization and understanding of the IgE system many questions remain either unanswered or only marginally addressed. One above all relates to the role of IgE. A common doubt is based on whether IgE mode of action should only be relegated to anti-parasite immunity and allergic manifestations. In search for a hidden role of IgE, reports from several laboratories are described herein in which a natural IgE link to cancer or the experimental redirection of IgE against cancer have been investigated. Epidemiological and investigational studies are trying to elucidate a possible direct intervention of endogenous IgE against cancer, raising thus far no definitive evidence. Conversely, experimental approaches implementing several strategies and engineered IgE formats built up a series of convincing results indicating that cancer might be tackled by the effector functions of this immunoglobulin class. Because of its peculiar immune features, IgE may present a superior anti-tumor performance as compared to IgG. However, extreme care should be taken on how IgE-based anti-tumor approaches should be devised. Overall, IgE appears as a promising resource, likely destined to enrich the anti-cancer arsenal.

References

[1]  Johansson, S.G.O. The History of IgE: From discovery to 2010. Curr. Allergy Asthma Rep. 2011, 11, 173–177, doi:10.1007/s11882-010-0174-3.
[2]  Dullaers, M.; De Bruyne, R.; Ramadani, F.; Gould, H.J.; Gevaert, P.; Lambrecht, B.N. The who, where, and when of IgE in allergic airway disease. J. Allergy Clin. Immunol. 2012, 129, 635–645, doi:10.1016/j.jaci.2011.10.029.
[3]  Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 2008, 8, 205–217, doi:10.1038/nri2273.
[4]  Erazo, A.; Kutchukhidze, N.; Leung, M.; Christ, A.P.G.; Urban, J.F.; Curotto de Lafaille, M.A.; Lafaille, J.J. Unique maturation program of the IgE response in vivo. Immunity 2007, 26, 191–203, doi:10.1016/j.immuni.2006.12.006.
[5]  Talay, O.; Yan, D.; Brightbill, H.D.; Straney, E.E.M.; Zhou, M.; Ladi, E.; Lee, W.P.; Egen, J.G.; Austin, C.D.; Xu, M.; et al. IgE+ memory B cells and plasma cells generated through a germinal-center pathway. Nat. Immunol. 2012, 13, 396–404, doi:10.1038/ni.2256.
[6]  Yang, Z.; Sullivan, B.M.; Allen, C.D.C. Fluorescent in vivo detection reveals that IgE(+) B cells are restrained by an intrinsic cell fate predisposition. Immunity 2012, 36, 857–872, doi:10.1016/j.immuni.2012.02.009.
[7]  Jensen-Jarolim, E.; Achatz, G.; Turner, M.C.; Karagiannis, S.; Legrand, F.; Capron, M.; Penichet, M.L.; Rodríguez, J.A.; Siccardi, A.G.; Vangelista, L.; et al. AllergoOncology: The role of IgE-mediated allergy in cancer. Allergy 2008, 63, 1255–1266, doi:10.1111/j.1398-9995.2008.01768.x.
[8]  Cancer and IgE: Introducing the Concept of AllergoOncology, 1st ed.; Penichet, M.L., Jensen-Jarolim, E., Eds.; Springer: New York, NY, USA, 2010; p. 280.
[9]  Gould, H.J.; Sutton, B.J.; Beavil, A.J.; Beavil, R.L.; McCloskey, N.; Coker, H.A.; Fear, D.; Smurthwaite, L. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 2003, 21, 579–628, doi:10.1146/annurev.immunol.21.120601.141103.
[10]  Lanzavecchia, A.; Parodi, B. In vitro stimulation of IgE production at a single precursor level by human alloreactive T helper clones. Clin. Exp. Immunol. 1984, 55, 197–203.
[11]  Cheng, L.E.; Wang, Z.-E.; Locksley, R.M. Murine B cells regulate serum IgE levels in a CD23-dependent manner. J. Immunol. 2010, 185, 5040–5047, doi:10.4049/jimmunol.1001900.
[12]  Kraft, S.; Kinet, J.-P. New developments in FcepsilonRI regulation, function and inhibition. Nat. Rev. Immunol. 2007, 7, 365–378, doi:10.1038/nri2072.
[13]  Kinet, J.P. The high-affinity IgE receptor (Fc epsilon RI): From physiology to pathology. Annu. Rev. Immunol. 1999, 17, 931–972, doi:10.1146/annurev.immunol.17.1.931.
[14]  Vangelista, L.; Cesco-Gaspere, M.; Lamba, D.; Burrone, O. Efficient folding of the FcepsilonRI alpha-chain membrane-proximal domain D2 depends on the presence of the N-terminal domain D1. J. Mol. Biol. 2002, 322.
[15]  Batista, F.D.F.; Anand, S.S.; Presani, G.G.; Efremov, D.G.D.; Burrone, O.R.O. The two membrane isoforms of human IgE assemble into functionally distinct B cell antigen receptors. J. Exp. Med. 1996, 184, 2197–2205, doi:10.1084/jem.184.6.2197.
[16]  Vangelista, L.; Soprana, E.; Cesco-Gaspere, M.; Mandiola, P.; Di Lullo, G.; Fucci, R.N.; Codazzi, F.; Palini, A.; Paganelli, G.; Burrone, O.R.; et al. Membrane IgE binds and activates Fc epsilon RI in an antigen-independent manner. J. Immunol. 2005, 174, 5602–5611.
[17]  Vouldoukis, I.; Mazier, D.; Moynet, D.; Thiolat, D.; Malvy, D.; Mossalayi, M.D. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS One 2011, 6, e18289.
[18]  Vouldoukis, I.; Riveros-Moreno, V.; Dugas, B.; Ouaaz, F.; Bécherel, P.; Debré, P.; Moncada, S.; Mossalayi, M.D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc. Natl. Acad. Sci. USA 1995, 92, 7804–7808, doi:10.1073/pnas.92.17.7804.
[19]  Walter, K.; Fulford, A.J.C.; McBeath, R.; Joseph, S.; Jones, F.M.; Kariuki, H.C.; Mwatha, J.K.; Kimani, G.; Kabatereine, N.B.; Vennervald, B.J.; et al. Increased human IgE induced by killing Schistosoma mansoni in vivo is associated with pretreatment Th2 cytokine responsiveness to worm antigens. J. Immunol. 2006, 177, 5490–5498.
[20]  Cooper, P.J.; Ayre, G.; Martin, C.; Rizzo, J.A.; Ponte, E.V.; Cruz, A.A. Geohelminth infections: a review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 2008, 63, 409–417, doi:10.1111/j.1398-9995.2007.01601.x.
[21]  Reddy, A.; Fried, B. Atopic disorders and parasitic infections. Adv. Parasitol. 2008, 66, 149–191, doi:10.1016/S0065-308X(08)00203-0.
[22]  Watanabe, N.; Bruschi, F.; Korenaga, M. IgE: A question of protective immunity in Trichinella spiralis infection. Trends Parasitol. 2005, 21, 175–178, doi:10.1016/j.pt.2005.02.010.
[23]  Galli, S.J.; Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 2012, 18, 693–704, doi:10.1038/nm.2755.
[24]  Gergen, P.J.; Turkeltaub, P.C.; Sempos, C.T. Is allergen skin test reactivity a predictor of mortality? Findings from a national cohort. Clin. Exp. Allergy 2000, 30, 1717–1723, doi:10.1046/j.1365-2222.2000.00971.x.
[25]  Turner, M.C.; Chen, Y.; Krewski, D.; Ghadirian, P. An overview of the association between allergy and cancer. Int. J. Cancer 2006, 118, 3124–3132, doi:10.1002/ijc.21752.
[26]  Kero, J.; Gissler, M.; Hemminki, E.; Isolauri, E. Could TH1 and TH2 diseases coexist? Evaluation of asthma incidence in children with coeliac disease, type 1 diabetes, or rheumatoid arthritis: a register study. J. Allergy Clin. Immunol. 2001, 108, 781–783, doi:10.1067/mai.2001.119557.
[27]  Olson, S.H.; Chou, J.F.; Ludwig, E.; O'Reilly, E.; Allen, P.J.; Jarnagin, W.R.; Bayuga, S.; Simon, J.; Gonen, M.; Reisacher, W.R.; et al. Allergies, obesity, other risk factors and survival from pancreatic cancer. Int. J. Cancer 2010, 127, 2412–2419, doi:10.1002/ijc.25240.
[28]  Santillan, A.A.; Camargo, C.A.; Colditz, G.A. A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control 2003, 14, 327–334, doi:10.1023/A:1023982402137.
[29]  Arana, A.; Wentworth, C.E.; Fernández-Vidaurre, C.; Schlienger, R.G.; Conde, E.; Arellano, F.M. Incidence of cancer in the general population and in patients with or without atopic dermatitis in the U.K. Br. J. Dermatol. 2010, 163, 1036–1043, doi:10.1111/j.1365-2133.2010.09887.x.
[30]  Turner, M.C. Epidemiology: Allergy history, IgE, and cancer. Cancer Immunol. Immunother. 2012, 61, 1493–1510, doi:10.1007/s00262-011-1180-6.
[31]  Rittmeyer, D.; Lorentz, A. Relationship between allergy and cancer: an overview. Int. Arch. Allergy Immunol. 2012, 159, 216–225, doi:10.1159/000338994.
[32]  Van Hemelrijck, M.; Garmo, H.; Binda, E.; Hayday, A.; Karagiannis, S.N.; Hammar, N.; Walldius, G.; Lambe, M.; Jungner, I.; Holmberg, L. Immunoglobulin E and cancer: A meta-analysis and a large Swedish cohort study. Cancer Causes Control 2010, 21, 1657–1667, doi:10.1007/s10552-010-9594-6.
[33]  Brigati, C.; Noonan, D.M.; Albini, A.; Benelli, R. Tumors and inflammatory infiltrates: Friends or foes? Clin. Exp. Metastasis 2002, 19, 247–258, doi:10.1023/A:1015587423262.
[34]  Crivellato, E.; Nico, B.; Ribatti, D. Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Lett. 2008, 269, 1–6, doi:10.1016/j.canlet.2008.03.031.
[35]  Dabiri, S.; Huntsman, D.; Makretsov, N.; Cheang, M.; Gilks, B.; Badjik, C.; Gelmon, K.; Chia, S.; Hayes, M. The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod. Pathol. 2004, 17, 690–695, doi:10.1038/modpathol.3800094.
[36]  Sinnamon, M.J.; Carter, K.J.; Sims, L.P.; Lafleur, B.; Fingleton, B.; Matrisian, L.M. A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 2008, 29, 880–886.
[37]  Ribatti, D.; Molica, S.; Vacca, A.; Nico, B.; Crivellato, E.; Roccaro, A.M.; Dammacco, F. Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 2003, 17, 1428–1430, doi:10.1038/sj.leu.2402970.
[38]  Molin, D.; Edstr?m, A.; Glimelius, I.; Glimelius, B.; Nilsson, G.; Sundstr?m, C.; Enblad, G. Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br. J. Haematol. 2002, 119, 122–124, doi:10.1046/j.1365-2141.2002.03768.x.
[39]  Johansson, A.; Rudolfsson, S.; Hammarsten, P.; Halin, S.; Pietras, K.; Jones, J.; Stattin, P.; Egevad, L.; Granfors, T.; Wikstr?m, P.; et al. Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am. J. Pathol. 2010, 177, 1031–1041, doi:10.2353/ajpath.2010.100070.
[40]  Welsh, T.J.; Green, R.H.; Richardson, D.; Waller, D.A.; O’Byrne, K.J.; Bradding, P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin.Oncol. 2005, 23, 8959–8967, doi:10.1200/JCO.2005.01.4910.
[41]  Dalton, D.K.; Noelle, R.J. The roles of mast cells in anticancer immunity. Cancer Immunol. Immunother. 2012, 61, 1511–1520, doi:10.1007/s00262-012-1246-0.
[42]  Di Carlo, E.; Modesti, A.; Coletti, A.; Colombo, M.P.; Giovarelli, M.; Forni, G.; Diodoro, M.G.; Musiani, P. Interaction between endothelial cells and the secreted cytokine drives the fate of an IL4- or an IL5-transduced tumour. J. Pathol. 1998, 186, 390–397, doi:10.1002/(SICI)1096-9896(199812)186:4<390::AID-PATH194>3.0.CO;2-Z.
[43]  Valent, P.; Agis, H.; Sperr, W.; Sillaber, C.; Horny, H.-P. Diagnostic and prognostic value of new biochemical and immunohistochemical parameters in chronic myeloid leukemia. Leuk. Lymphoma 2008, 49, 635–638, doi:10.1080/10428190701858849.
[44]  Munitz, A.; Levi-Schaffer, F. Eosinophils: ‘new’ roles for ‘old’ cells. Allergy 2004, 59, 268–275, doi:10.1111/j.1398-9995.2003.00442.x.
[45]  Fernández-Ace?ero, M.J.; Galindo-Gallego, M.; Sanz, J.; Aljama, A. Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 2000, 88, 1544–1548, doi:10.1002/(SICI)1097-0142(20000401)88:7<1544::AID-CNCR7>3.0.CO;2-S.
[46]  Dorta, R.G.; Landman, G.; Kowalski, L.P.; Lauris, J.R.P.; Latorre, M.R.D.O.; Oliveira, D.T. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology 2002, 41, 152–157.
[47]  Ishibashi, S.; Ohashi, Y.; Suzuki, T.; Miyazaki, S.; Moriya, T.; Satomi, S.; Sasano, H. Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res. 2006, 26, 1419–1424.
[48]  von Wasielewski, R.; Seth, S.; Franklin, J.; Fischer, R.; Hübner, K.; Hansmann, M.L.; Diehl, V.; Georgii, A. Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors. Blood 2000, 95, 1207–1213.
[49]  Gleich, G.J.; Adolphson, C.R. The eosinophilic leukocyte: Structure and function. Adv. Immunol. 1986, 39, 177–253, doi:10.1016/S0065-2776(08)60351-X.
[50]  Newton, D.L.; Rybak, S.M. Unique recombinant human ribonuclease and inhibition of Kaposi’s sarcoma cell growth. J. Natl. Cancer Inst. 1998, 90, 1787–1791, doi:10.1093/jnci/90.23.1787.
[51]  Huland, E.; Huland, H. Tumor-associated eosinophilia in interleukin-2-treated patients: evidence of toxic eosinophil degranulation on bladder cancer cells. J. Cancer Res. Clin. Oncol. 1992, 118, 463–467, doi:10.1007/BF01629431.
[52]  Cormier, S.A.; Taranova, A.G.; Bedient, C.; Nguyen, T.; Protheroe, C.; Pero, R.; Dimina, D.; Ochkur, S.I.; O’Neill, K.; Colbert, D.; et al. Pivotal advance: Eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J. Leukoc. Biol. 2006, 79, 1131–1139, doi:10.1189/jlb.0106027.
[53]  Simson, L.; Ellyard, J.I.; Dent, L.A.; Matthaei, K.I.; Rothenberg, M.E.; Foster, P.S.; Smyth, M.J.; Parish, C.R. Regulation of carcinogenesis by IL-5 and CCL11: A potential role for eosinophils in tumor immune surveillance. J. Immunol. 2007, 178, 4222–4229.
[54]  Legrand, F.; Driss, V.; Delbeke, M.; Loiseau, S.; Hermann, E.; Dombrowicz, D.; Capron, M. Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J. Immunol. 2010, 185, 7443–7451, doi:10.4049/jimmunol.1000446.
[55]  Leek, R.D.; Lewis, C.E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A.L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56, 4625–4629.
[56]  Lin, E.Y.; Li, J.-F.; Bricard, G.; Wang, W.; Deng, Y.; Sellers, R.; Porcelli, S.A.; Pollard, J.W. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol. Oncol. 2007, 1, 288–302, doi:10.1016/j.molonc.2007.10.003.
[57]  Qian, B.-Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51, doi:10.1016/j.cell.2010.03.014.
[58]  Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896, doi:10.1038/ni.1937.
[59]  Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.; Li, D.; Sharp, L.L.; et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011, 331, 1612–1616, doi:10.1126/science.1198443.
[60]  Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555, doi:10.1016/S1471-4906(02)02302-5.
[61]  Bieber, T. Fc epsilon RI on human epidermal Langerhans cells: An old receptor with new structure and functions. Int. Arch. Allergy Immunol. 1997, 113, 30–34, doi:10.1159/000237500.
[62]  Lowin, B.; Hahne, M.; Mattmann, C.; Tschopp, J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994, 370, 650–652, doi:10.1038/370650a0.
[63]  Regnault, A.; Lankar, D.; Lacabanne, V.; Rodriguez, A.; Théry, C.; Rescigno, M.; Saito, T.; Verbeek, S.; Bonnerot, C.; Ricciardi-Castagnoli, P.; et al. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 1999, 189, 371–380, doi:10.1084/jem.189.2.371.
[64]  Platzer, B.; Dehlink, E.; Turley, S.J.; Fiebiger, E. How to connect an IgE-driven response with CTL activity? Cancer Immunol. Immunother. 2012, 61, 1521–1525, doi:10.1007/s00262-011-1127-y.
[65]  Parish, C.R. Cancer immunotherapy: The past, the present and the future. Immunol. Cell Biol. 2003, 81, 106–113, doi:10.1046/j.0818-9641.2003.01151.x.
[66]  Sant, A.J.; Chaves, F.A.; Jenks, S.A.; Richards, K.A.; Menges, P.; Weaver, J.M.; Lazarski, C.A. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol. Rev. 2005, 207, 261–278, doi:10.1111/j.0105-2896.2005.00307.x.
[67]  Reali, E.; Greiner, J.W.; Corti, A.; Gould, H.J.; Bottazzoli, F.; Paganelli, G.; Schlom, J.; Siccardi, A.G. IgEs targeted on tumor cells: Therapeutic activity and potential in the design of tumor vaccines. Cancer Res. 2001, 61, 5517–5522.
[68]  Nigro, E.A.; Brini, A.T.; Soprana, E.; Ambrosi, A.; Dombrowicz, D.; Siccardi, A.G.; Vangelista, L. Antitumor IgE adjuvanticity: Key role of Fc epsilon RI. J. Immunol. 2009, 183, 4530–4536, doi:10.4049/jimmunol.0900842.
[69]  Nigro, E.A.; Soprana, E.; Brini, A.T.; Ambrosi, A.; Yenagi, V.A.; Dombrowicz, D.; Siccardi, A.G.; Vangelista, L. An antitumor cellular vaccine based on a mini-membrane IgE. J. Immunol. 2012, 188, 103–110, doi:10.4049/jimmunol.1101842.
[70]  Nagy, E.; Berczi, I.; Sehon, A.H. Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol. Immunother. 1991, 34, 63–69, doi:10.1007/BF01741326.
[71]  Kershaw, M.H.; Darcy, P.K.; Trapani, J.A.; MacGregor, D.; Smyth, M.J. Tumor-specific IgE-mediated inhibition of human colorectal carcinoma xenograft growth. Oncol. Res. 1998, 10, 133–142.
[72]  Gould, H.J.; Mackay, G.A.; Karagiannis, S.N.; O’Toole, C.M.; Marsh, P.J.; Daniel, B.E.; Coney, L.R.; Zurawski, V.R.; Joseph, M.; Capron, M.; et al. Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur. J. Immunol. 1999, 29, 3527–3537, doi:10.1002/(SICI)1521-4141(199911)29:11<3527::AID-IMMU3527>3.0.CO;2-5.
[73]  Karagiannis, S.N.; Wang, Q.; East, N.; Burke, F.; Riffard, S.; Bracher, M.G.; Thompson, R.G.; Durham, S.R.; Schwartz, L.B.; Balkwill, F.R.; et al. Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur. J. Immunol. 2003, 33, 1030–1040, doi:10.1002/eji.200323185.
[74]  Karagiannis, S.N.; Bracher, M.G.; Hunt, J.; McCloskey, N.; Beavil, R.L.; Beavil, A.J.; Fear, D.J.; Thompson, R.G.; East, N.; Burke, F.; et al. IgE-antibody-dependent immunotherapy of solid tumors: Cytotoxic and phagocytic mechanisms of eradication of ovarian cancer cells. J. Immunol. 2007, 179, 2832–2843.
[75]  Karagiannis, S.N.; Bracher, M.G.; Beavil, R.L.; Beavil, A.J.; Hunt, J.; McCloskey, N.; Thompson, R.G.; East, N.; Burke, F.; Sutton, B.J.; et al. Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells. Cancer Immunol. Immunother. 2008, 57, 247–263.
[76]  Karagiannis, P.; Singer, J.; Hunt, J.; Gan, S.K.E.; Rudman, S.M.; Mechtcheriakova, D.; Knittelfelder, R.; Daniels, T.R.; Hobson, P.S.; Beavil, A.J.; et al. Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol. Immunother. 2009, 58, 915–930, doi:10.1007/s00262-008-0607-1.
[77]  Daniels, T.R.; Leuchter, R.K.; Quintero, R.; Helguera, G.; Rodríguez, J.A.; Martínez-Maza, O.; Schultes, B.C.; Nicodemus, C.F.; Penichet, M.L. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol. Immunother. 2012, 61, 991–1003, doi:10.1007/s00262-011-1150-z.
[78]  Teo, P.Z.; Utz, P.J.; Mollick, J.A. Using the allergic immune system to target cancer: Activity of IgE antibodies specific for human CD20 and MUC1. Cancer Immunol. Immunother. 2012, 61, 2295–2309, doi:10.1007/s00262-012-1299-0.
[79]  Spillner, E.; Plum, M.; Blank, S.; Miehe, M.; Singer, J.; Braren, I. Recombinant IgE antibody engineering to target EGFR. Cancer Immunol. Immunother. 2012, 61, 1565–1573, doi:10.1007/s00262-012-1287-4.
[80]  Daniels-Wells, T.R.; Helguera, G.; Leuchter, R.K.; Quintero, R.; Kozman, M.; Rodríguez, J.A.; Ortiz-Sánchez, E.; Martínez-Maza, O.; Schultes, B.C.; Nicodemus, C.F.; et al. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer 2013, 13, 195, doi:10.1186/1471-2407-13-195.
[81]  Kershaw, M.H.; Darcy, P.K.; Trapani, J.A.; Smyth, M.J. The use of chimeric human Fc(epsilon) receptor I to redirect cytotoxic T lymphocytes to tumors. J. Leukoc. Biol. 1996, 60, 721–728.
[82]  Teng, M.W.L.; Kershaw, M.H.; Jackson, J.T.; Smyth, M.J.; Darcy, P.K. Adoptive transfer of chimeric FcepsilonRI gene-modified human T cells for cancer immunotherapy. Hum. Gene Ther. 2006, 17, 1134–1143, doi:10.1089/hum.2006.17.1134.
[83]  Riemer, A.B.; Untersmayr, E.; Knittelfelder, R.; Duschl, A.; Pehamberger, H.; Zielinski, C.C.; Scheiner, O.; Jensen-Jarolim, E. Active induction of tumor-specific IgE antibodies by oral mimotope vaccination. Cancer Res. 2007, 67, 3406–3411, doi:10.1158/0008-5472.CAN-06-3758.
[84]  Sutter, G.; Moss, B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl. Acad. Sci. USA 1992, 89, 10847–10851, doi:10.1073/pnas.89.22.10847.
[85]  Benigni, F.; Zimmermann, V.S.; Hugues, S.; Caserta, S.; Basso, V.; Rivino, L.; Ingulli, E.; Malherbe, L.; Glaichenhaus, N.; Mondino, A. Phenotype and homing of CD4 tumor-specific T cells is modulated by tumor bulk. J. Immunol. 2005, 175, 739–748.
[86]  Dombrowicz, D.; Flamand, V.; Brigman, K.K.; Koller, B.H.; Kinet, J.P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 1993, 75, 969–976, doi:10.1016/0092-8674(93)90540-7.
[87]  Yu, P.; Kosco-Vilbois, M.; Richards, M.; K?hler, G.; Lamers, M.C. Negative feedback regulation of IgE synthesis by murine CD23. Nature 1994, 369, 753–756, doi:10.1038/369753a0.
[88]  Dombrowicz, D.; Brini, A.T.; Flamand, V.; Hicks, E.; Snouwaert, J.N.; Kinet, J.P.; Koller, B.H. Anaphylaxis mediated through a humanized high affinity IgE receptor. J. Immunol. 1996, 157, 1645–1651.
[89]  Di Lullo, G.; Soprana, E.; Panigada, M.; Palini, A.; Erfle, V.; Staib, C.; Sutter, G.; Siccardi, A.G. Marker gene swapping facilitates recombinant modified vaccinia virus Ankara production by host-range selection. J. Virol. Methods 2009, 156, 37–43, doi:10.1016/j.jviromet.2008.10.026.
[90]  Di Lullo, G.; Soprana, E.; Panigada, M.; Palini, A.; Agresti, A.; Comunian, C.; Milani, A.; Capua, I.; Erfle, V.; Siccardi, A.G. The combination of marker gene swapping and fluorescence-activated cell sorting improves the efficiency of recombinant modified vaccinia virus Ankara vaccine production for human use. J. Virol. Methods 2010, 163, 195–204, doi:10.1016/j.jviromet.2009.09.016.
[91]  Riemer, A.B.; Klinger, M.; Wagner, S.; Bernhaus, A.; Mazzucchelli, L.; Pehamberger, H.; Scheiner, O.; Zielinski, C.C.; Jensen-Jarolim, E. Generation of peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J. Immunol. 2004, 173, 394–401.
[92]  Untersmayr, E.; Sch?ll, I.; Swoboda, I.; Beil, W.J.; F?rster-Waldl, E.; Walter, F.; Riemer, A.; Kraml, G.; Kinaciyan, T.; Spitzauer, S.; et al. Antacid medication inhibits digestion of dietary proteins and causes food allergy: A fish allergy model in BALB/c mice. J. Allergy Clin. Immunol. 2003, 112, 616–623, doi:10.1016/S0091-6749(03)01719-6.
[93]  Isaacs, J.D.; Clark, M.R.; Greenwood, J.; Waldmann, H. Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J. Immunol. 1992, 148, 3062–3071.
[94]  Mount, P.F.; Sutton, V.R.; Li, W.; Burgess, J.; McKEnzie, I.F.; Pietersz, G.A.; Trapani, J.A. Chimeric (mouse/human) anti-colon cancer antibody c30.6 inhibits the growth of human colorectal cancer xenografts in scid/scid mice. Cancer Res. 1994, 54, 6160–6166.
[95]  Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 177–182.
[96]  Hudis, C.A. Trastuzumab—Mechanism of action and use in clinical practice. N. Engl. J. Med. 2007, 357, 39–51, doi:10.1056/NEJMra043186.
[97]  Ford, A.C.; Grandis, J.R. Targeting epidermal growth factor receptor in head and neck cancer. Head Neck 2003, 25, 67–73, doi:10.1002/hed.10224.
[98]  Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 1997, 3, 2703–2707.
[99]  Schiller, J.H. Developments in epidermal growth factor receptor-targeting therapy for solid tumors: Focus on matuzumab (EMD 72000). Cancer Invest. 2008, 26, 81–95, doi:10.1080/07357900701511847.
[100]  Berlyn, K.A.; Schultes, B.; Leveugle, B.; Noujaim, A.A.; Alexander, R.B.; Mann, D.L. Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes. Clin. Immunol. 2001, 101, 276–283.
[101]  Neuchrist, C.; Kornfehl, J.; Grasl, M.; Lassmann, H.; Kraft, D.; Ehrenberger, K.; Scheiner, O. Distribution of immunoglobulins in squamous cell carcinoma of the head and neck. Int. Arch. Allergy Immunol. 1994, 104, 97–100, doi:10.1159/000236714.
[102]  Fu, S.L.; Pierre, J.; Smith-Norowitz, T.A.; Hagler, M.; Bowne, W.; Pincus, M.R.; Mueller, C.M.; Zenilman, M.E.; Bluth, M.H. Immunoglobulin E antibodies from pancreatic cancer patients mediate antibody-dependent cell-mediated cytotoxicity against pancreatic cancer cells. Clin. Exp. Immunol. 2008, 153, 401–409, doi:10.1111/j.1365-2249.2008.03726.x.
[103]  Untersmayr, E.; Bises, G.; Starkl, P.; Bevins, C.L.; Scheiner, O.; Boltz-Nitulescu, G.; Wrba, F.; Jensen-Jarolim, E. The high affinity IgE receptor Fc epsilonRI is expressed by human intestinal epithelial cells. PLoS One 2010, 5, e9023.
[104]  Rudman, S.M.; Josephs, D.H.; Cambrook, H.; Karagiannis, P.; Gilbert, A.E.; Dodev, T.; Hunt, J.; Koers, A.; Montes, A.; Taams, L.; et al. Harnessing engineered antibodies of the IgE class to combat malignancy: initial assessment of FcεRI-mediated basophil activation by a tumour-specific IgE antibody to evaluate the risk of type I hypersensitivity. Clin. Exp. Allergy 2011, 41, 1400–1413, doi:10.1111/j.1365-2222.2011.03770.x.
[105]  Jensen-Jarolim, E.; Singer, J. Why could passive Immunoglobulin E antibody therapy be safe in clinical oncology? Clin. Exp. Allergy 2011, 41, 1337–1340, doi:10.1111/j.1365-2222.2011.03764.x.
[106]  Karagiannis, S.N.; Josephs, D.H.; Karagiannis, P.; Gilbert, A.E.; Saul, L.; Rudman, S.M.; Dodev, T.; Koers, A.; Blower, P.J.; Corrigan, C.; et al. Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol. Immunother. 2012, 61, 1547–1564, doi:10.1007/s00262-011-1162-8.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413