全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2014 

The Role of CD2 Family Members in NK-Cell Regulation of B-Cell Antibody Production

DOI: 10.3390/antib3010001

Keywords: NK cells, B lymphocytes, CD244, CD48, TLR7

Full-Text   Cite this paper   Add to My Lib

Abstract:

Natural Killer (NK) cells, an important component of the innate immune system, can mount much more rapid responses upon activation than adaptive antigen specific responses. Among the various functions attributed to NK cells their effect on antibody production merits special attention. The modification of IgG subclasses distribution as well as the amplification of the B cell response can be functionally relevant both for mediation of antibody-dependent cellular cytotoxicity (ADCC) and for control of dysregulated autoantibody production. In this review recent experimental evidence for the mechanistic basis of the effect of NK cells on B cell-responses will be covered. Thus, it will be shown that these effects are mediated not only via activation of cytokine and Toll-like receptors (TLR), but also by direct receptor-ligand interactions. Importantly, the function of these receptor/ligands, CD48 and CD244, do not require recognition of class I-MHC molecules but are more dependent on inflammatory conditions brought about by infection or oncogenesis.

References

[1]  Abruzzo, L.V.; Rowley, D.A. Homeostasis of the antibody responses, Immunoregulation by NK cells. Science 1983, 222, 581–585.
[2]  Wilder, J.A.; Koh, C.Y.; Yuan, D. The role of NK cells during in vivo antigen-specific antibody responses. J. Immunol. 1996, 156, 146–152.
[3]  Koh, C.Y.; Yuan, D. The effect of NK cell activation by tumor cells on antigen-specific antibody responses. J. Immunol. 1997, 159, 4745–4752.
[4]  Satoskar, A.R.; Stamm, L.M.; Zhang, X.; Okano, M.; David, J.R.; Terhorst, C.; Wang, B. NK cell-deficient mice develop a Th1-like response but fail to mount an efficient antigen-specific IgG2a antibody response. J. Immunol. 1999, 163, 5298–5302.
[5]  Szomolanyi-Tsuda, E.; Brien, J.D.; Dorgan, J.E.; Garcea, R.L.; Woodland, R.T.; Welsh, R.M. Antiviral T-cell-independent type 2 antibody responses induced in vivo in the absence of T and NK cells. Virology 2001, 280, 160–168, doi:10.1006/viro.2000.0766.
[6]  Markine-Goriaynoff, D.; Hulhoven, X.; Cambiaso, C.L.; Monteyne, P.; Briet, T.; Gonzalez, M.-D.; Coulie, P.; Coutelier, J.-P. Natural killer cell activation after infection with lactate dehydrogenase-elevating virus. J. Gen. Virol. 2002, 83, 2709–2716.
[7]  Yuan, D.; Bibi, R.; Dang, T. The role of adjuvant on the regulatory effects of NK cells on B cell responses as revealed by a new model of NK cell deficiency. Int. Immunol. 2004, 16, 707–716, doi:10.1093/intimm/dxh071.
[8]  Hawn, T.R.; Ozinsky, A.; Underhill, D.M.; Buckner, F.S.; Akira, S.; Aderem, A. Leishmania major activates IL-1 alpha expression in macrophages through a MyD88-dependent pathway. Microbe. Infect. 2002, 4, 763–771, doi:10.1016/S1286-4579(02)01596-4.
[9]  Scanga, C.A.; Aliberti, J.; Jankovic, D.; Tilloy, F.; Bennouna, S.; Denkers, E.Y.; Medzhitov, R.; Sher, A. Cutting edge: MyD88 is required for resistance to Toxoplasma gondii infection and regulates parasite-induced IL-12 production by dendritic cells. J. Immunol. 2002, 168, 5997–6001.
[10]  Becker, I.; Salaiza, N.; Aguirre, M.; Delgado, J.; Carrillo-Carrasco, N.; Kobeh, L.G.; Ruiz, A.; Cervantes, R.; Torres, A.P.; Cabrera, N.; et al. Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Mol. Biochem. Parasitol. 2003, 130, 65–74, doi:10.1016/S0166-6851(03)00160-9.
[11]  Diebold, S.S.; Kaisho, T.; Hemmi, H.; Akira, S.; e Sousa, C.R. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004, 303, 1529–1531, doi:10.1126/science.1093616.
[12]  Huang, L.Y.; Ishii, K.J.; Akira, S.; Aliberti, J.; Golding, B. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J. Immunol. 2005, 175, 3964–3970.
[13]  Szomolanyi-Tsuda, E.; Liang, X.; Welsh, R.M.; Kurt-Jones, E.A.; Finberg, R.W. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J. Virol. 2006, 80, 4286–4291, doi:10.1128/JVI.80.9.4286-4291.2006.
[14]  Barr, T.A.; Brown, S.; Ryan, G.; Zhao, J.; Gray, D. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 2007, 37, 3040–3053, doi:10.1002/eji.200636483.
[15]  Zhu, J.; Martinez, J.; Huang, X.; Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 2007, 109, 619–625, doi:10.1182/blood-2006-06-027136.
[16]  Miyake, T.; Kumagai, Y.; Kato, H.; Guo, Z.; Matsushita, K.; Satoh, T.; Kawagoe, T.; Kumar, H.; Jang, M.H.; Kawai, T.; et al. Poly I:C-induced activation of NK cells by CD8alpha+ dendritic cells via the IPS-1 and TRIF-dependent pathways. J. Immunol. 2009, 183, 2522–2528, doi:10.4049/jimmunol.0901500.
[17]  Makela, S.M.; Osterlund, P.; Julkunen, I. TLR ligands induce synergistic interferon-beta and interferon-lambda1 gene expression in human monocyte-derived dendritic cells. Mol. Immunol. 2011, 48, 505–515, doi:10.1016/j.molimm.2010.10.005.
[18]  Martinez, J.; Huang, X.; Yang, Y. Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection. PLoS Pathog. 2010, 6, e1000811, doi:10.1371/journal.ppat.1000811.
[19]  Gao, N.; Jennings, P.; Guo, Y.; Yuan, D. Regulatory role of natural killer (NK) cells on antibody responses to Brucella abortus. Innate Immun. 2011, 17, 152–163, doi:10.1177/1753425910367526.
[20]  Nabel, G.; Allard, W.J.; Cantor, H. A cloned cell line mediating natural killer cell function inhibits immunoglobulin secretion. J. Exp. Med. 1982, 156, 658–663, doi:10.1084/jem.156.2.658.
[21]  Becker, J.C.; Kolanus, W.; Lonnemann, C.; Schmidt, R.E. Human natural killer clones enhance in vitro antibody production by tumour necrosis factor alpha and gamma interferon. Scand. J. Immunol. 1990, 32, 153–162, doi:10.1111/j.1365-3083.1990.tb02905.x.
[22]  Snapper, C.M.; Yamaguchi, H.; Moorman, M.A.; Sneed, R.; Smoot, D.; Mond, J.J. Natural killer cells induce activated murine B cells to secrete Ig. J. Immunol. 1993, 151, 5251–5260.
[23]  Gray, J.; Horwitz, D. Activated human NK cells can stimulate resting B cells to secrete immunoglobulin. J. Immunol. 1995, 154, 5656–5664.
[24]  Vos, Q.; Snapper, C.M.; Mond, J.J. Heterogeneity in the ability of cytotoxic murine NK cell clones to enhance Ig secretion in vitro. Int. Immunol. 1999, 11, 159–168, doi:10.1093/intimm/11.2.159.
[25]  Gao, N.; Dang, T.; Dunnick, W.A.; Collins, J.T.; Blazar, B.R.; Yuan, D. Receptors and Counterreceptors Involved in NK-B Cell Interactions. J. Immunol. 2005, 174, 4113–4119.
[26]  Jennings, P.; Yuan, D. NK cell enhancement of antigen presentation by B lymphocytes. J. Immunol. 2009, 182, 2879–2887, doi:10.4049/jimmunol.0803220.
[27]  Gao, N.; Dang, T.; Yuan, D. IFN-gamma-dependent and -independent initiation of switch recombination by NK cells. J. Immunol. 2001, 167, 2011–2018.
[28]  Sinha, S.K.; Gao, N.; Guo, Y.; Yuan, D. Mechanism of induction of NK activation by 2B4 (CD244) via its cognate ligand. J. Immunol. 2010, 185, 5205–5210, doi:10.4049/jimmunol.1002518.
[29]  Clarkson, N.G.; Simmonds, S.J.; Puklavec, M.J.; Brown, M.H. Direct and indirect interactions of the cytoplasmic region of CD244 (2B4) in mice and humans with FYN kinase. J. Biol. Chem. 2007, 282, 25385–25394, doi:10.1074/jbc.M704483200.
[30]  Thet, S.; Yuan, D. University of Texas Medical Center, Dallas, TX, USA. Unpublished work, 2013.
[31]  Yuan, D.; Guo, Y.; Thet, S. Enhancement of Antigen-Specific Immunoglobulin G Responses by Anti-CD48. J. Innate Immun. 2013, 5, 174–184, doi:10.1159/000345121.
[32]  Gonzalez-Cabrero, J.; Wise, C.J.; Latchman, Y.; Freeman, G.J.; Sharpe, A.H.; Reiser, H. CD48-deficient mice have a pronounced defect in CD4(+) T cell activation. Proc. Natl. Acad. Sci. USA 1999, 96, 1019–1023, doi:10.1073/pnas.96.3.1019.
[33]  Bortnick, A.; Allman, D. What is and what should always have been: Long-lived plasma cells induced by T cell-independent antigens. J. Immunol. 2013, 190, 5913–5918, doi:10.4049/jimmunol.1300161.
[34]  Bajenoff, M.; Breart, B.; Huang, A.Y.C.; Qi, H.; Cazareth, J.; Braud, V.M.; Germain, R.N. Nicolas Glaichenhaus, Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 2006, 203, 619–631, doi:10.1084/jem.20051474.
[35]  Salazar-Mather, T.P.; Ishikawa, R.; Biron, C.A. NK cell trafficking and cytokine expression in splenic compartments after IFN induction and viral infection. J. Immunol. 1996, 157, 3054–3064.
[36]  Li, S.; Yan, Y.; Lin, Y.; Bullens, D.M.; Rutgeerts, O.; Goebels, J.; Segers, C.; Boon, L.; Kasran, A.; De Vos, R.; et al. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells. Blood 2007, 110, 3926–3935, doi:10.1182/blood-2007-01-065482.
[37]  Fogel, L.A.; Sun, M.M.; Geurs, T.L.; Carayannopoulos, L.N.; French, A.R. Markers of nonselective and specific NK cell activation. J. Immunol. 2013, 190, 6269–6276, doi:10.4049/jimmunol.1202533.
[38]  Gerosa, F.; Baldani-Guerra, B.; Nisii, C.; Marchesini, V.; Carra, G.; Trinchieri, G. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 2002, 195, 327–333, doi:10.1084/jem.20010938.
[39]  Piccioli, D.; Sbrana, S.; Melandri, E.; Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 2002, 195, 335–341, doi:10.1084/jem.20010934.
[40]  Koka, R.; Burkett, P.; Chien, M.; Chai, S.; Boone, D.L.; Ma, A. Cutting edge: Murine dendritic cells require IL-15R alpha to prime NK cells. J. Immunol. 2004, 173, 3594–3598.
[41]  Lucas, M.; Schachterle, W.; Oberle, K.; Aichele, P.; Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 2007, 26, 503–517, doi:10.1016/j.immuni.2007.03.006.
[42]  Mailliard, R.B.; Son, Y.-I.; Redlinger, R.; Coates, P.T.; Giermasz, A.; Morel, P.A.; Storkus, W.J.; Kalinski, P. Dendritic cells mediate NK cell help for Th1 and CTL responses: Two-signal requirement for the induction of NK cell helper function. J. Immunol. 2003, 171, 2366–2373.
[43]  Yoshida, O.; Akbar, F.; Miyake, T.; Abe, M.; Matsuura, B.; Hiasa, Y.; Onji, M. Impaired dendritic cell functions because of depletion of natural killer cells disrupt antigen-specific immune responses in mice: Restoration of adaptive immunity in natural killer-depleted mice by antigen-pulsed dendritic cell. Clin. Exp. Immunol. 2008, 152, 174–181, doi:10.1111/j.1365-2249.2008.03601.x.
[44]  Reid-Yu, S.A.; Small, C.L.; Coombes, B.K. CD3 NK1.1 cells aid in the early induction of a Th1 response to an attaching and effacing enteric pathogen. Eur. J. Immunol. 2013, 43, 2638–2649, doi:10.1002/eji.201343435.
[45]  Kelly, M.N.; Zheng, M.; Ruan, S.; Kolls, J.; D’Souza, A.; Shellito, J.E. Memory CD4+ T cells are required for optimal NK cell effector functions against the opportunistic fungal pathogen Pneumocystis murina. J. Immunol. 2013, 190, 285–295, doi:10.4049/jimmunol.1200861.
[46]  Gasteiger, G.; Hemmers, S.; Firth, M.A.; Floc’h, A.L.; Huse, M.; Sun, J.C.; Rudensky, A.Y. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J. Exp. Med. 2013, 210, 1167–1178, doi:10.1084/jem.20122462.
[47]  Gasteiger, G.; Hemmers, S.; Bos, P.D.; Sun, J.C.; Rudensky, A.Y. IL-2-dependent adaptive control of NK cell homeostasis. J. Exp. Med. 2013, 210, 1179–1187, doi:10.1084/jem.20122571.
[48]  Kerdiles, Y.; Ugolini, S.; Vivier, E. T cell regulation of natural killer cells. J. Exp. Med. 2013, 210, 1065–1068, doi:10.1084/jem.20130960.
[49]  Wandstrat, A.E.; Nguyen, C.; Limaye, N.; Chan, A.Y.; Subramanian, S.; Tian, X.-H.; Yim, Y.-S.; Pertsemlidis, A.; Garner, H.R., Jr.; Morel, L.; et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004, 21, 769–780, doi:10.1016/j.immuni.2004.10.009.
[50]  Morel, L.; Yu, Y.; Blenman, K.R.; Caldwell, R.A.; Wakeland, E.K. Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm. Genome. 1996, 7, 335–339, doi:10.1007/s003359900098.
[51]  Morel, L.; Mohan, C.; Yu, Y.; Croker, B.P.; Tian, N.; Deng, A.; Wakeland, E.K. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J. Immunol. 1997, 158, 6019–6028.
[52]  Sobel, E.S.; Mohan, C.; Morel, L.; Schiffenbauer, J.; Wakeland, E.K. Genetic dissection of SLE pathogenesis: Adoptive transfer of Sle1 mediates the loss of tolerance by bone marrow-derived B cells. J. Immunol. 1999, 162, 2415–2421.
[53]  Garni-Wagner, B.A.; Purohit, A.; Mathew, P.A.; Bennett, M.; Kumar, V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 1993, 151, 60–70.
[54]  Nakajima, H.; Cella, M.; Langen, H.; Friedlein, A.; Colonna, M. Activating interactions in human NK cell recognition: The role of 2B4-CD48. Eur. J. Immunol. 1999, 29, 1676–1683, doi:10.1002/(SICI)1521-4141(199905)29:05<1676::AID-IMMU1676>3.0.CO;2-Y.
[55]  Tangye, S.G.; Lazetic, S.; Woollatt, E.; Sutherland, G.R.; Lanier, L.L.; Phillips, J.H. Cutting edge: Human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP. J. Immunol. 1999, 162, 6981–6985.
[56]  Schatzle, J.D.; Sheu, S.; Stepp, S.E.; Mathew, P.A.; Bennett, M.; Kumar, V. Characterization of inhibitory and stimulatory forms of the murine natural killer cell receptor 2B4. Proc. Natl. Acad. Sci. USA 1999, 96, 3870–3875, doi:10.1073/pnas.96.7.3870.
[57]  Stepp, S.E.; Schatzle, J.D.; Bennett, M.; Kumar, V.; Mathew, P.A. Gene structure of the murine NK cell receptor 2B4: Presence of two alternatively spliced isoforms with distinct cytoplasmic domains. Eur. J. Immunol. 1999, 29, 2392–2399, doi:10.1002/(SICI)1521-4141(199908)29:08<2392::AID-IMMU2392>3.0.CO;2-R.
[58]  Eissmann, P.; Beauchamp, L.; Wooters, J.; Tilton, J.C.; Long, E.O.; Watzl, C. Molecular basis for positive and negative signaling by the natural killer cell receptor 2B4 (CD244). Blood 2005, 105, 4722–4729, doi:10.1182/blood-2004-09-3796.
[59]  Lee, K.M.; Bhawan, S.; Majima, T.; Wei, H.; Nishimura, M.I.; Yagita, H.; Kumar, V. Cutting edge: The NK cell receptor 2B4 augments antigen-specific T cell cytotoxicity through CD48 ligation on neighboring T cells. J. Immunol. 2003, 170, 4881–4885.
[60]  Velikovsky, C.A.; Deng, L.; Chlewicki, L.K.; Fernández, M.M.; Kumar, V.; Mariuzza, R.A. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Immunity 2007, 27, 572–584, doi:10.1016/j.immuni.2007.08.019.
[61]  Gao, N.; Schwartzberg, P.; Wilder, J.A.; Blazar, B.R.; Yuan, D. B cell induction of IL-13 expression in NK cells: Role of CD244 and SLAM-associated protein. J. Immunol. 2006, 176, 2758–2764.
[62]  Taniguchi, R.T.; Guzior, D.; Kumar, V. 2B4 inhibits NK-cell fratricide. Blood 2007, 110, 2020–2023, doi:10.1182/blood-2007-02-076927.
[63]  Waggoner, S.N.; Taniguchi, R.T.; Mathew, P.A.; Kumar, V.; Welsh, R.M. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J. Clin. Invest. 2010, 120, 1925–1938, doi:10.1172/JCI41264.
[64]  Jennings, P.; Taniguch, R.T.; Mathew, P.A.; Kumar, V.; Welsh, R.M. Antigen-specific responses and ANA production in B6.Sle1b mice: A role for SAP. J. Autoimmun. 2008, 31, 345–353, doi:10.1016/j.jaut.2008.08.002.
[65]  Yuan, D.; Chan, A.; Schwartzberg, P.; Wakeland, E.K.; Yuan, D. The role of NK cells in the development of autoantibodies. Autoimmunity 2011, 31, 345–353.
[66]  Czar, M.J.; Kersh, E.N.; Mijares, L.A.; Lanier, G.; Lewis, J.; Yap, G.; Chen, A.; Sher, A.; Duckett, C.S.; Ahmed, R.; et al. Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc. Natl. Acad. Sci. USA 2001, 98, 7449–7454, doi:10.1073/pnas.131193098.
[67]  Cannons, J.L.; Yu, L.J.; Hill, B.; Mijares, L.A.; Dombroski, D.; Nichols, K.E.; Antonellis, A.; Koretzky, G.A.; Gardner, K.; Schwartzberg, P.L. SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 2004, 21, 693–706, doi:10.1016/j.immuni.2004.09.012.
[68]  Nichols, K.E.; Hom, J.; Gong, S.-Y.; Ganguly, A.; Ma, C.S.; Cannons, J.L.; Tangye, S.G.; Schwartzberg, P.L.; Koretzky, G.A.; Stein, P.L. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 2005, 11, 340–345, doi:10.1038/nm1189.
[69]  Kumar, K.R.; Li, L.; Yan, M.; Bhaskarabhatla, M.; Mobley, A.B.; Nguyen, C.; Mooney, J.M.; Schatzle, J.D.; Wakeland, E.K.; Mohan, C. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 2006, 312, 1665–1669, doi:10.1126/science.1125893.
[70]  Cannons, J.L.; Qi, H.; Lu, K.T.; Dutta, M.; Gomez-Rodriguez, J.; Cheng, J.; Wakeland, E.K.; Germain, R.N.; Schwartzberg, P.L. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 2010, 32, 253–265, doi:10.1016/j.immuni.2010.01.010.
[71]  Dutta, M.; Kraus, Z.J.; Gomez-Rodriguez, J.; Hwang, S.; Cannons, J.L.; Cheng, J.; Lee, S.-Y.; Wiest, D.L.; Wakeland, E.K.; Schwartzberg, P.L. A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J. Immunol. 2013, 190, 2121–2128, doi:10.4049/jimmunol.1202145.
[72]  Fossati, L.; Sobel, E.S.; Iwamoto, M.; Cohen, P.L.; Eisenberg, R.A.; Izui, S. The Yaa gene-mediated acceleration of murine lupus: Yaa- T cells from non-autoimmune mice collaborate with Yaa+ B cells to produce lupus autoantibodies in vivo. Eur. J. Immunol. 1995, 25, 3412–3417, doi:10.1002/eji.1830251231.
[73]  Subramanian, S.; Tus, K.; Li, Q.-Z.; Wang, A.; Tian, X.-H.; Zhou, J.; Liang, C.; Bartov, G.; McDaniel, L.D.; Zhou, X.J.; et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl. Acad. Sci. USA 2006, 103, 9970–9975, doi:10.1073/pnas.0603912103.
[74]  Avalos, A.M.; Uccellini, M.B.; Lenert, P.; Viglianti, G.A.; Marshak-Rothstein, A. FcgammaRIIB regulation of BCR/TLR-dependent autoreactive B-cell responses. Eur. J. Immunol. 2010, 40, 2692–2698, doi:10.1002/eji.200940184.
[75]  Lau, C.M.; Broughton, C.; Tabor, A.S.; Akira, S.; Flavell, R.A.; Mamula, M.J.; Christensen, S.R.; Shlomchik, M.J.; Viglianti, G.A.; Rifkin, I.R.; et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 2005, 202, 1171–1177, doi:10.1084/jem.20050630.
[76]  Berland, R.; Fernandez, L.; Kari, E.; Han, J.-H.; Lomakin, I.; Akira, S.; Wortis, H.H.; Kearney, J.F.; Ucci, A.A.; Imanishi-Kari, T. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 2006, 25, 429–440, doi:10.1016/j.immuni.2006.07.014.
[77]  Santiago-Raber, M.L.; Dunand-Sauthier, I.; Wu, T.; Li, Q.-Z.; Uematsu, S.; Akira, S.; Reith, W.; Mohan, C.; Kotzin, B.L.; Izui, S. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J. Autoimmun. 2010, 34, 339–348, doi:10.1016/j.jaut.2009.11.001.
[78]  Hwang, S.H.; Lee, H.; Yamamoto, M.; Jones, L.A.; Dayalan, J.; Hopkins, R.; Zhou, X.J.; Yarovinsky, F.; Connolly, J.E.; Curotto de Lafaille, M.A. B cell TLR7 expression drives anti-RNA autoantibody production and exacerbates disease in systemic lupus erythematosus-prone mice. J. Immunol. 2012, 189, 5786–5796, doi:10.4049/jimmunol.1202195.
[79]  Sinha, S.; Guo, Y.; Thet, S.; Yuan, D. IFN type I and type II independent enhancement of B cell TLR7 expression by natural killer cells. J. Leukoc. Biol. 2012, 92, 713–722, doi:10.1189/jlb.0212064.
[80]  Ank, N.; Iversen, M.B.; Bartholdy, C.; Staeheli, P.; Hartmann, R.; Jensen, U.B.; Dagnaes-Hansen, F.; Thomsen, A.R.; Chen, Z.; Haugen, H. An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. J. Immunol. 2008, 180, 2474–2485.
[81]  Zhou, Z.; Hamming, O.J.; Ank, N.; Paludan, S.R.; Nielsen, A.L.; Hartmann, R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 2007, 81, 7749–7758, doi:10.1128/JVI.02438-06.
[82]  Green, N.M.; Laws, A.; Kiefer, K.; Busconi, L.; Kim, Y.-M.; Brinkmann, M.M.; Trail, E.H.; Yasuda, K.; Christensen, S.R.; Shlomchik, M.J.; et al. Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. J. Immunol. 2009, 183, 1569–1576, doi:10.4049/jimmunol.0803899.
[83]  Bessa, J.; Jegerlehner, A.; Hinton, H.J.; Pumpens, P.; Saudan, P.; Schneider, P.; Bachmann, M.F. Alveolar macrophages and lung dendritic cells sense RNA and drive mucosal IgA responses. J. Immunol. 2009, 183, 3788–3799, doi:10.4049/jimmunol.0804004.
[84]  Thibault, D.L.; Graham, K.L.; Lee, L.Y.; Balboni, I.; Hertzog, P.J.; Utz, P.J. Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Res. Ther. 2009, 11, R112, doi:10.1186/ar2771.
[85]  Bao, Y.; Han, Y.; Chen, Z.; Xu, S.; Cao, X. IFN-alpha-producing PDCA-1+ Siglec-H- B cells mediate innate immune defense by activating NK cells. Eur. J. Immunol. 2011, 41, 657–668, doi:10.1002/eji.201040840.
[86]  Kishimoto, T. Interleukin-6: From basic science to medicine—40 years in immunology. Annu. Rev. Immunol. 2005, 23, 1–21, doi:10.1146/annurev.immunol.23.021704.115806.
[87]  Barr, T.A.; Shen, P.; Brown, S.; Lampropoulou, V.; Roch, T.; Lawrie, S.; Fan, B.; O’Connor, R.A.; Anderton, S.M.; Bar-Or, A.; et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 2012, 209, 1001–1010, doi:10.1084/jem.20111675.
[88]  Maeda, K.; Malykhin, A.; Teague-Weber, B.N.; Sun, X.-H.; Darise Farris, A.; Mark Coggeshall, K. Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood 2009, 113, 4534–4540, doi:10.1182/blood-2008-12-192559.
[89]  Tipping, P.G.; Kitching, A.R. Glomerulonephritis, Th1 and Th2: What's new? Clin. Exp. Immunol. 2005, 142, 207–215.
[90]  Kipps, T.J.; Parham, P.; Punt, J.; Herzenberg, L.A. Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. J. Exp. Med. 1985, 161, 1–17, doi:10.1084/jem.161.1.1.
[91]  Steplewski, Z.; Lubeck, M.D.; Scholz, D.; Loibner, H.; McDonald, S.J.; Koprowski, H. Tumor cell lysis and tumor growth inhibition by the isotype variants of MAb BR55-2 directed against Y oligosaccharide. In Vivo 1991, 5, 79–83.
[92]  Koh, C.Y.; Yuan, D. The functional relevance of NK-cell-mediated upregulation of antigen-specific IgG2a responses. Cell. Immunol. 2000, 204, 135–142, doi:10.1006/cimm.2000.1703.
[93]  Gupta, N.; Arthos, J.; Khazanie, P.; Steenbeke, T.D.; Censoplano, N.M.; Chung, E.A.; Cruz, C.C.; Chaikin, M.A.; Daucher, M.; Kottilil, S.; et al. Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: Implications for immunotherapy. Virology 2005, 332, 491–497, doi:10.1016/j.virol.2004.12.018.
[94]  Mochizuki, Y.; De Ming, T.; Hayashi, T.; Itoh, M.; Hotta, H.; Homma, M. Protection of mice against Sendai virus pneumonia by non-neutralizing anti-F monoclonal antibodies. Microbiol. Immunol. 1990, 34, 171–183, doi:10.1111/j.1348-0421.1990.tb01002.x.
[95]  Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 2000, 6, 443–446, doi:10.1038/74704.
[96]  Cooper, M.A.; Elliott, J.M.; Keyel, P.A.; Yang, L.; Carrero, J.A.; Yokoyama, W.M. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 2009, 106, 1915–1919, doi:10.1073/pnas.0813192106.
[97]  Sun, J.C.; Beilke, J.N.; Lanier, L.L. Immune memory redefined: Characterizing the longevity of natural killer cells. Immunol. Rev. 2010, 236, 83–94, doi:10.1111/j.1600-065X.2010.00900.x.
[98]  Vivier, E.; Beilke, J.N.; Lanier, L.L. Innate or adaptive immunity? The example of natural killer cells. Science 2011, 331, 44–49, doi:10.1126/science.1198687.
[99]  Soudja, S.M.; Ruiz, A.L.; Marie, J.C.; Lauvau, G. Inflammatory monocytes activate memory CD8(+) T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 2012, 37, 549–562, doi:10.1016/j.immuni.2012.05.029.
[100]  Karre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 2002, 55, 221–228, doi:10.1046/j.1365-3083.2002.01053.x.
[101]  Tripathy, S.K.; Keyel, P.A.; Yang, L.; Pingel, J.T.; Cheng, T.P. Achim Schneeberger, Wayne M. Yokoyama, Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J. Exp. Med. 2008, 205, 1829–1841, doi:10.1084/jem.20072446.
[102]  Sun, J.C.; Lanier, L.L. Cutting edge: Viral infection breaks NK cell tolerance to "missing self". J. Immunol. 2008, 181, 7453–7457.
[103]  Harada, M.; Lin, T.; Kurosawa, S.; Maeda, T.; Umesue, M.; Itoh, O.; Matsuzaki, G.; Nomoto, K. Natural killer cells inhibit the development of autoantibody production in (C57BL/6 x DBA/2) F1 hybrid mice injected with DBA/2 spleen cells. Cell. Immunol. 1995, 161, 42–49, doi:10.1006/cimm.1995.1007.
[104]  Nilsson, N.; Carlsten, H. Enhanced natural but diminished antibody-mediated cytotoxicity in the lungs of MRLlpr/lpr mice. Clin. Exp. Immunol. 1996, 105, 480–485.
[105]  Liang, Z.; Xie, C.; Chen, C.; Kreska, D.; Hsu, K.; Li, L.; Zhou, X.J.; Mohan, C. Pathogenic profiles and molecular signatures of antinuclear autoantibodies rescued from NZM2410 lupus mice. J. Exp. Med. 2004, 199, 381–398, doi:10.1084/jem.20030132.
[106]  Santiago-Raber, M.L.; Laporte, C.; Reininger, L.; Izui, S. Genetic basis of murine lupus. Autoimmun. Rev. 2004, 3, 33–39, doi:10.1016/S1568-9972(03)00062-4.
[107]  Wang, A.; Batteux, F.; Wakeland, E.K. The role of SLAM/CD2 polymorphisms in systemic autoimmunity. Curr. Opin. Immunol. 2010, 22, 706–714, doi:10.1016/j.coi.2010.10.014.
[108]  Orange, J.S. Unraveling human natural killer cell deficiency. J. Clin. Invest. 2012, 122, 798–801, doi:10.1172/JCI62620.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413