全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Properties of Thermosets Derived from Chemically Modified Triglycerides and Bio-Based Comonomers

DOI: 10.3390/app3040684

Keywords: thermoset, polymer, bio-based, green chemistry

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of materials was prepared by curing acrylated epoxidized soybean oil (AESO) and dibutyl itaconate (DBI) or ethyl cinnamate (EC) comonomers to provide examples of thermosets with a high proportion of bio-based carbon, in accordance with the principles of green chemistry. The comonomers, representative of cellulose-derived (DBI) or potentially lignin-derived (EC) raw materials, were tested at levels of 25%, 33%, and 50% by mass and the resulting products were characterized by infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analysis. Both DBI and EC were incorporated into the thermosets to a high extent (>90%) at all concentrations tested. The AESO-DBI and AESO-EC blends showed substantial degradation at 390–400 °C, similar to pure AESO. Glass transition temperatures decreased as comonomer content increased; the highest T g of 41.4 °C was observed for AESO-EC (3:1) and the lowest T g of 1.4 °C was observed for AESO-DBI (1:1). Accordingly, at 30 °C the storage modulus values were highest for AESO-EC (3:1, 37.0 MPa) and lowest for AESO-DBI (1:1, 1.5 MPa).

References

[1]  Zoebelein, H. Dictionary of Renewable Resources, 2nd ed. ed.; Wiley-VCH: Weinheim, Germany, 2001.
[2]  Quirino, R.L.; Larock, R.C. Bioplastics, Biocomposites, and Biocoatings from Natural Oils. In Renewable and Sustainable Polymers; American Chemical Society: Washington, DC, USA, 2011; Volume 1063, pp. 37–59.
[3]  Xia, Y.; Quirino, R.L.; Larock, R.C. Bio-based thermosetting polymers from vegetable oils. J. Renew. Mat. 2013, 1, 3–27.
[4]  Khot, S.N.; La Scala, J.J.; Can, E.; Morye, S.S.; Williams, G.I.; Palmese, G.R.; Kusefoglu, S.H.; Wool, R.P. Development and application of triglyceride-based polymers and composites. J. Appl. Polym. Sci. 2001, 82, 703–723, doi:10.1002/app.1897.
[5]  Wool, R.P.; Sun, X.S. Bio-Based Polymers and Composites; Elsevier Academic Press: Boston, MA, USA, 2005.
[6]  Anastas, P.T. The transformative innovations needed by green chemistry for sustainability. ChemSusChem 2009, 2, 391–392, doi:10.1002/cssc.200900041.
[7]  Beach, E.S.; Cui, Z.; Anastas, P.T. Green chemistry: A design framework for sustainability. Energ. Environ. Sci. 2009, 2, 1038–1049, doi:10.1039/b904997p.
[8]  Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass, Volume I: Results of Screening for Potential Candidates from Sugars and Synthetic Gas; US Department of Energy: Oak Ridge, TN, USA, 2004.
[9]  Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539.
[10]  Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value Added Chemicals from Biomass, Volume II: Results of Screening for Potential Candidates from Biorefinery Lignin; US Department of Energy: Oak Ridge, TN, USA, 2007.
[11]  Stanzione, J.F.; Giangiulio, P.A.; Sadler, J.M.; La Scala, J.J.; Wool, R.P. Lignin-based bio-oil mimic as biobased resin for composite applications. ACS Sustain. Chem. Eng. 2013, 1, 419–426, doi:10.1021/sc3001492.
[12]  Stanzione, J.F.; Sadler, J.M.; La Scala, J.J.; Wool, R.P. Lignin model compounds as bio-based reactive diluents for liquid molding resins. ChemSusChem 2012, 5, 1291–1297, doi:10.1002/cssc.201100687.
[13]  Ma, Q.; Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y. Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: The role of rosin acid derivatives. Green Chem. 2013, 15, 1300, doi:10.1039/c3gc00095h.
[14]  Willke, T.; Vorlop, K.D. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001, 56, 289–295, doi:10.1007/s002530100685.
[15]  Sastry, G.S.R.; Murthy, B.G.K.; Aggarwal, J.S. Diels-Alder adducts of safflower oil fatty acids. Itaconic acid as a dienophile. Farbe und Lack 1972, 78, 927–929.
[16]  Sugama, T.; Cook, M. Poly(itaconic acid)-modified chitosan coatings for mitigating corrosion of aluminum substrates. Prog. Org. Coat. 2000, 38, 79–87, doi:10.1016/S0300-9440(00)00077-1.
[17]  Ma, S.; Liu, X.; Jiang, Y.; Tang, Z.; Zhang, C.; Zhu, J. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem. 2013, 15, 245–254, doi:10.1039/c2gc36715g.
[18]  Cowie, J.M.G.; Henshall, S.A.E.; McEwen, I.J.; Velickovic, J. Poly(alkyl itaconates). 4. Glass and sub-glass transitions in the di-alkyl ester series, methyl to hexyl. Polymer 1977, 18, 612–616, doi:10.1016/0032-3861(77)90065-9.
[19]  Marvel, C.S.; McCain, G.H. Polymerization of esters of cinnamic acid. J. Am. Chem. Soc. 1953, 75, 3272–3273, doi:10.1021/ja01109a506.
[20]  La Scala, J.; Wool, R.P. Rheology of chemically modified triglycerides. J. Appl. Polym. Sci. 2005, 95, 774–783, doi:10.1002/app.20846.
[21]  Campanella, A.; La Scala, J.J.; Wool, R.P. Fatty acid-based comonomers as styrene replacements in soybean and castor oil-based thermosetting polymers. J. Appl. Polym. Sci. 2011, 119, 1000–1010, doi:10.1002/app.32810.
[22]  Lu, J.; Wool, R.P. Novel thermosetting resins for smc applications from linseed oil: Synthesis, characterization, and properties. J. Appl. Polym. Sci. 2006, 99, 2481–2488, doi:10.1002/app.22843.
[23]  Sung, S.-J.; Cho, K.-Y.; Hah, H.; Lee, S.; Park, J.-K. Effect of plasticization of poly(vinyl cinnamate) on liquid crystal orientation stability. Jpn. J. Appl. Phys. 2005, 44, L412–L415, doi:10.1143/JJAP.44.L412.
[24]  Fernández-García, M.; Madruga, E.L. Glass transitions in dimethyl and di-n-butyl poly(itaconate ester)s and their copolymers with methyl methacrylate. Polymer 1997, 38, 1367–1371, doi:10.1016/S0032-3861(96)00649-0.
[25]  La Scala, J. The Effects of Triglyceride Structure on the Properties of Plant Oil-Based Resins, Vol. 1. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2002.
[26]  La Scala, J.; Wool, R.P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. J. Appl. Polym. Sci. 2013, 127, 1812–1826, doi:10.1002/app.37927.
[27]  Wool, R.P. Twinkling fractal theory of the glass transition. J. Polym. Sci. B 2008, 46, 2765–2778, doi:10.1002/polb.21596.
[28]  Hong, C.K.; Wool, R.P. Development of a bio-based composite material from soybean oil and keratin fibers. J. Appl. Polym. Sci. 2005, 95, 1524–1538, doi:10.1002/app.21044.
[29]  Senoz, E.; Stanzione, J.F.; Reno, K.H.; Wool, R.P.; Miller, M.E.N. Pyrolyzed chicken feather fibers for biobased composite reinforcement. J. Appl. Polym. Sci. 2013, 128, 983–989, doi:10.1002/app.38163.
[30]  Lee, K.-Y.; Ho, K.K.C.; Schlufter, K.; Bismarck, A. Hierarchical composites reinforced with robust short sisal fibre preforms utilising bacterial cellulose as binder. Compos. Sci. Technol. 2012, 72, 1479–1486, doi:10.1016/j.compscitech.2012.06.014.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133