Extensive modeling of the seeding of plasma-based soft X-ray lasers is reported in this article. Seminal experiments on amplification in plasmas created from solids have been studied in detail and explained. Using a transient collisional excitation scheme, we show that a 18 μJ, 80 fs fully coherent pulse is achievable by using plasmas pumped by a compact 10 Hz laser. We demonstrate that direct seeding of plasmas created by nanosecond lasers is not efficient. Therefore, we propose and fully study the transposition to soft X-rays of the Chirped Pulse Amplification (CPA) technique. Soft X-ray pulses with energy of 6 mJ and 200 fs duration are reachable by seeding plasmas pumped by compact 100 J, sub-ns, 1 shot/min lasers. These soft X-ray lasers would reach GW power, corresponding to an increase of 100 times as compared to the highest peak power achievable nowadays in the soft X-ray region (30 eV–1 keV). X-ray CPA is opening new horizon for soft x-ray ultra-intense sources.
References
[1]
Chapman, H.N.; Barty, A.; Bogan, M.J.; Boutet, S.; Frank, M.; Hau-Riege, S.P.; Marchesini, S.; Woods, B.W.; Bajt, S.; Benner, W.H.; et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006, 2, 839–843, doi:10.1038/nphys461.
[2]
Wachulak, P.W.; Bartels, R.A.; Marconi, M.C.; Menoni, C.S.; Rocca, J.J.; Lu, Y.; Parkinson, B. Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser. Opt. Exp. 2006, 14, 9636–9642.
[3]
Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.; et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Phot. 2010, 4, 641–647, doi:10.1038/nphoton.2010.176.
[4]
Ackerman, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bahr, J.; Balandi, V.; BEeutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 2007, 1, 336–342, doi:10.1038/nphoton.2007.76.
[5]
Wang, Y.; Granados, E.; Larotonda, M.A.; Berrill, M.; Luther, B.M.; Patel, D.; Menoni, C.S.; Rocca, J.J. High-brightness injection-seeded soft-X-ray-laser amplifier using a solid target. Phys. Rev. Lett. 2012, 108, 267403:1–267403:6, doi:10.1103/PhysRevLett.108.267403.
[6]
Vondungbo, B.; Gautier, J.; Lambert, G.; Barszczak Sardinha, A.; Lozano, M.; Sebban, S.; Ducousso, M.; Boutu, W.; Li, K.; Tudu, B.; et al. Laser-inducedultrafastdemagnetization in the presence of a nanoscalemagneticdomain network. Nat. Comm. 2012, 3, 999, doi:10.1038/ncomms2007.
[7]
Mancuso, A.P.; Gorniak, Th.; Staier, F.; Yefanov, O.M.; Barth, R.; Christophis, C.; Reime, B.; Gulden, J.; Singer, A.; Pettit, M.E.; et al. Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 2010, 12, 0350031:1–0350031:14.
[8]
Rus, B.; Mocek, T.; Pr?g, A.R.; Kozlová, M.; Jamelot, G.; Carillon, A.; Ros, D.; Joyeux, D.; Phalippou, D. Multimillijoule, highly coherent X-ray laser at 21 nm operating in deep saturation through double-pass amplification. Phys. Rev. A 2002, 66, 063806:1–063806:12, doi:10.1103/PhysRevA.66.063806.
[9]
Ditmire, T.; Hutchinson, M.H.R.; Key, M.H.; Lewis, C.L.S.; MacPhee, A.; Neely, D.; Perry, M.D.; Smith, R.A.; Wark, J.S.; Zepf, M.T. Amplification of xuv harmonic radiation in a gallium amplifier. Phys. Rev. A 1995, 51, R4337–R4340, doi:10.1103/PhysRevA.51.R4337.
[10]
Zeitoun, P.; Faivre, G.; Sebban, S.; Mocek, T.; Hallou, S.; Fajardo, M.; Aubert, D.; Balcou, P.H.; Burgy, F.; Douillet, D.; et al. A high intensity, highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam. Nature 2004, 431, 426–429, doi:10.1038/nature02883.
Oliva, E.; Fajardo, M.; Li, L.; Pittman, M.; Le, T.T.T.; Gautier, J.; Lambert, G.; Velarde, P.; Ros, D.; Sebban, S.; et al. A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers. Nat. Phot. 2012, 6, 764–767, doi:10.1038/nphoton.2012.246.
[13]
Ogando, F.; Velarde, P. Development of a radiation transport code under adaptive mesh refinement scheme. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 541, doi:10.1016/S0022-4073(01)00096-6.
[14]
Cassou, K.; Zeitoun, P.; Velarde, P.; Ogando, F.; Roy, F.; Fajardo, M.; Faivre, G.; Ros, D. Transverse spatial improvement of a transiently pumped soft-X-ray amplifier. Phys. Rev. A 2006, 74, 045802, doi:10.1103/PhysRevA.74.045802.
[15]
Oliva, E.; Zeitoun, P.; Fajardo, M.; Velarde, P.; Cassou, K.; Ros, D.; Sebban, S. Optimization of soft X-ray amplifier by tailoring plasma hydrodynamics. Opt. Lett. 2009, 34, 2640–2642, doi:10.1364/OL.34.002640.
[16]
Oliva, E.; Zeitoun, P.; Velarde, P.; Fajardo, M.; Cassou, K.; Ros, D.; Sebban, S.; Portillo, D.; Le Pape, S. A hydrodynamic study of plasma amplifiers for soft X-ray lasers: A transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm. Phys. Rev. E 2010, 82, 056408:1–056408:13, doi:10.1103/PhysRevE.82.056408.
[17]
Sureau, A.; Holden, P.B. From amplification of spontaneous emission to saturation in X-ray lasers: A maxwell-bloch treatment. Phys. Rev. A 1995, 2, 3110–3125, doi:10.1103/PhysRevA.52.3110.
[18]
Oliva, E.; Zeitoun, P.; Fajardo, M.; Lambert, G.; Ros, D.; Sebban, S.; Velarde, P. From natural to forced amplification in plasma based seeded soft X-ray lasers. Phys. Rev. A 2011, 84, 013811:1–013811:5.
[19]
Larroche, O.; Ros, D.; Klisnick, A.; Sureau, A.; Moller, C.; Guennou, H. Maxwell-Bloch modeling of X-ray-laser-signal buildup in single- and double-pass configurations. Phys. Rev. A 2000, 62, 043815, doi:10.1103/PhysRevA.62.043815.
[20]
Vodungbo, B.; Barszczak Sardinha, A.; Gautier, J.; Lambert, G.; Valentin, C.; Mozano, M.; Iaquaniello, G.; Delmotte, F.; Sebban, S.; Lunning, J.; et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 2011, 19, 4346–4356, doi:10.1364/OE.19.004346.
[21]
Yuan, K.-J.; Bandrauk, A.D. Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses. J. Phys. B. 2012, 45, 074001, doi:10.1088/0953-4075/45/7/074001.
[22]
Kai-Jun, Y.; Bandrauk, A.D. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media. Phys. Rev. Lett. 2013, 110, 023003, doi:10.1103/PhysRevLett.110.023003.
[23]
Kim, C.M.; Lee, J.; Janulewicz, K.A. Amplification of a high-order harmonic pulse in an active medium of a plasma-based X-ray laser. Phys. Rev. Lett. 2010, 104, 053901, doi:10.1103/PhysRevLett.104.053901.
[24]
Al’miev, I.R.; Larroche, O.; Benredjem, D.; Dubau, J.; Kazamias, C.; Moller, C.; Klisnick, A. Dynamical description of transient X-ray lasers seeded with high-order harmonic radiation through maxwell-bloch numerical simulations. Phys. Rev. Lett. 2007, 99, 123902, doi:10.1103/PhysRevLett.99.123902.
[25]
Siegman, A.E. Lasers; Kelly, A., Ed.; University Science Books: Sausalito, CA, USA, 1986.
[26]
Frantz, L.M.; Nodvik, J.S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 1963, 34, 2346, doi:10.1063/1.1702744.
[27]
Jones, R.J.; Moll, K.D.; Thorpe, M.J.; Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 2005, 94, 193201, doi:10.1103/PhysRevLett.94.193201.
[28]
Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221, doi:10.1016/0030-4018(85)90120-8.
[29]
Pascolini, M.; Bonora, S.; Giglia, A.; Mahne, N.; Nannarone, S.; Poletto, L. Gratings in a conical diffraction mounting for an extreme-ultraviolet time-delay-compensated monochromator. Appl. Opt. 2006, 45, 3253–3262, doi:10.1364/AO.45.003253.