Bioaerosol can act as nuclei and thus may play an important role in climate change. During the Fourth Chinese National Arctic Research Expedition (CHINARE 2010) from July to September 2010, the concentrations and size distributions of airborne fungi, which are thought to be one of important bioaerosols, in the marine boundary layer were investigated. The concentrations of airborne fungi varied considerably with a range of 0 to 320.4 CFU/m 3. The fungal concentrations in the marine boundary layer were significantly lower than those in most continental ecosystems. Airborne fungi over oceans roughly displayed a decreasing trend with increasing latitudes. The mean concentrations of airborne fungi in the region of offshore China, the western North Pacific Ocean, the Chukchi Sea, the Canada Basin, and the central Arctic Ocean were 172.2 ± 158.4, 73.8 ± 104.4, 13.3 ± 16.2, 16.5 ± 8.0, and 1.2 ± 1.0 CFU/m 3, respectively. In most areas airborne fungi showed a unimodal size distribution pattern, with the maximum proportion (about 36.2%) in the range of 2.1~3.3 μm and the minimum proportion (about 3.5%) in the range of 0.65~1.1 μm, and over 50% occurred on the fine size (<3.3 μm). Potential factors influencing airborne fungal concentrations, including the origin of air mass, meteorological conditions, and sea ice conditions, were discussed.
References
[1]
Li, M.; Qi, J.; Zhang, H.; Huang, S.; Li, L.; Gao, D. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ. 2011, 409, 3812–3819, doi:10.1016/j.scitotenv.2011.06.001.
[2]
Ariya, P.A.; Amyot, M. New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004, 38, 1231–1232, doi:10.1016/j.atmosenv.2003.12.006.
[3]
Urbano, R.; Palenik, B.; Gaston, C.; Prather, K. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences 2011, 8, 301–309, doi:10.5194/bg-8-301-2011.
[4]
Shelton, B.G.; Kirkland, K.H.; Flanders, W.D.; Morris, G.K. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl. Environ. Microbiol. 2002, 68, 1743–1753, doi:10.1128/AEM.68.4.1743-1753.2002.
[5]
Zuraimi, M.; Fang, L.; Tan, T.; Chew, F.; Tham, K. Airborne fungi in low and high allergic prevalence child care centers. Atmos. Environ. 2009, 43, 2391–2400, doi:10.1016/j.atmosenv.2009.02.004.
[6]
Morris, C.; Sands, D.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P.; Psenner, R. Microbiology and atmospheric processes: Research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences 2011, 8, 17–25, doi:10.5194/bg-8-17-2011.
[7]
Georgakopoulos, D.; Després, V.; Fr?hlich-Nowoisky, J.; Psenner, R.; Ariya, P.; Pósfai, M.; Ahern, H.; Moffett, B.; Hill, T. Microbiology and atmospheric processes: Biological, physical and chemical characterization of aerosol particles. Biogeosciences 2009, 6, 721–737, doi:10.5194/bg-6-721-2009.
[8]
Dusek, U.; Frank, G.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 2006, 312, 1375–1378, doi:10.1126/science.1125261.
[9]
P?hlker, C.; Wiedemann, K.T.; Sinha, B.; Shiraiwa, M.; Gunthe, S.S.; Smith, M.; Su, H.; Artaxo, P.; Chen, Q.; Cheng, Y. Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science 2012, 337, 1075–1078, doi:10.1126/science.1223264.
[10]
Fang, Z.; Ouyang, Z.; Hu, L.; Wang, X.; Zheng, H.; Lin, X. Culturable airborne fungi in outdoor environments in Beijing, China. Sci. Total Environ. 2005, 350, 47–58. (in Chinese), doi:10.1016/j.scitotenv.2005.01.032.
[11]
Menetrez, M.; Foarde, K.; Esch, R.; Schwartz, T.; Dean, T.; Hays, M.; Cho, S.; Betancourt, D.; Moore, S. An evaluation of indoor and outdoor biological particulate matter. Atmos. Environ. 2009, 43, 5476–5483, doi:10.1016/j.atmosenv.2009.07.027.
[12]
Kalogerakis, N.; Paschali, D.; Lekaditis, V.; Pantidou, A.; Eleftheriadis, K.; Lazaridis, M. Indoor air quality—Bioaerosol measurements in domestic and office premises. J. Aerosol Sci. 2005, 36, 751–761, doi:10.1016/j.jaerosci.2005.02.004.
[13]
Prospero, J.M.; Blades, E.; Mathison, G.; Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 2005, 21, 1–19, doi:10.1007/s10453-004-5872-7.
[14]
Chen, H.; Wang, B. Research on airborne microbes over some areas of the East China Sea and the Yellow Sea. Donghai Marine Sci. 1998, 16, 33–39.
[15]
Pady, S.; Kapica, L. Air-borne fungi in the arctic and other parts of Canada. Can. J. Bot. 1953, 31, 309–323, doi:10.1139/b53-025.
[16]
Marks, R.; Kruczalak, K.; Jankowska, K.; Michalska, M. Bacteria and fungi in air over the Gulf of Gdańsk and Baltic sea. J. Aerosol Sci. 2001, 32, 237–250, doi:10.1016/S0021-8502(00)00064-1.
[17]
Smith, D.J.; Jaffe, D.A.; Birmele, M.N.; Griffin, D.W.; Schuerger, A.C.; Hee, J.; Roberts, M.S. Free tropospheric transport of microorganisms from Asia to North America. Microb. Ecol. 2012, 64, 973–985, doi:10.1007/s00248-012-0088-9.
[18]
Kramer, C.L.; Holzapfel, E.P. Air biota of the upper atmosphere over the Pacific Ocean and continental United States. Agric. Meteorol. 1973, 12, 83–93, doi:10.1016/0002-1571(73)90009-5.
[19]
Raisi, L.; Aleksandropoulou, V.; Lazaridis, M.; Katsivela, E. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia 2013, 29, 223–248.
[20]
Fr?hlich-Nowoisky, J.; Burrows, S.; Xie, Z.; Engling, G.; Solomon, P.; Fraser, M.; Mayol-Bracero, O.; Artaxo, P.; Begerow, D.; Conrad, R. Biogeography in the air: Fungal diversity over land and oceans. Biogeosciences 2012, 9, 1125–1136, doi:10.5194/bg-9-1125-2012.
[21]
Rolph, G.D.; Draxler, R.R. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory); NOAA Air Resources Laboratory: College Park, MD, USA, 2013.
[22]
Sesartic, A.; Dallafior, T. Global fungal spore emissions, review and synthesis of literature data. Biogeosciences 2011, 8, 1181–1192, doi:10.5194/bg-8-1181-2011.
[23]
Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fr?hlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; P?schl, U. Primary biological aerosol particles in the atmosphere: A review. Tellus B 2012, 64, 15598.
[24]
Pady, S.; Kelly, C. Aerobiological studies of fungi and bacteria over the Atlantic Ocean. Can. J. Bot. 1954, 32, 202–212, doi:10.1139/b54-018.
[25]
Jaenicke, R. Abundance of cellular material and proteins in the atmosphere. Science 2005, 308, 73, doi:10.1126/science.1106335.
[26]
Hyv?rinen, A.; Vahteristo, M.; Meklin, T.; Jantunen, M.; Nevalainen, A.; Moschandreas, D. Temporal and spatial variation of fungal concentrations in indoor air. Aerosol Sci. Technol. 2001, 35, 688–695.
[27]
Fang, Z.; Ouyang, Z.; Hu, L.; Lin, X.; Wang, X. Granularity distribution of airborne microbes in summer in Beijing. Huan Jing Ke Xue 2004, 25, 1–5. (in Chinese).
[28]
Xu, W.; Qi, J.; Jin, C.; Gao, D.; Li, M.; Li, L.; Huang, S.; Zhang, H. Concentration distribution of bioaerosol in summer and autumn in the Qingdao coastal region. Huan Jing Ke Xue 2011, 32, 9–17. (in Chinese).
[29]
Jiang, H.; Dong, H.; Zhang, G.; Yu, B.; Chapman, L.R.; Fields, M.W. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl. Environ. Microbiol. 2006, 72, 3832–3845, doi:10.1128/AEM.02869-05.
[30]
Baleux, B.; Caro, A.; Lesne, J.; Got, P.; Binard, S.; Delpeuch, B. Survival and virulence changes in the VNC state of Salmonella Typhimurium in relation to simultaneous UV radiation, salinity and nutrient deprivation exposure. Oceanol. Acta 1998, 21, 939–950, doi:10.1016/S0399-1784(99)80017-6.
[31]
Robinson, C.H. Cold adaptation in Arctic and Antarctic fungi. New Phytol. 2001, 151, 341–353, doi:10.1046/j.1469-8137.2001.00177.x.
[32]
Kahl, J.D.W.; Martinez, D.A. Long-term variability in the low-level inversion layer over the Arctic Ocean. Int. J. Climatol. 1996, 16, 1297–1313, doi:10.1002/(SICI)1097-0088(199611)16:11<1297::AID-JOC86>3.0.CO;2-T.
[33]
Dueker, M.E.; O’Mullan, G.D.; Weathers, K.C.; Juhl, A.R.; Uriarte, M. Coupling of fog and marine microbial content in the near-shore coastal environment. Biogeosciences 2012, 9, 803–813, doi:10.5194/bg-9-803-2012.
[34]
Fuzzi, S.; Mandrioli, P.; Perfetto, A. Fog droplets—an atmospheric source of secondary biological aerosol particles. Atmos. Environ. 1997, 31, 287–290, doi:10.1016/1352-2310(96)00160-4.
[35]
Lu, P.; Li, Z.; Cheng, B.; Lei, R.; Zhang, R. Sea ice surface features in Arctic summer 2008: Aerial observations. Remote Sens. Environ. 2010, 114, 693–699, doi:10.1016/j.rse.2009.11.009.
[36]
Gunde-Cimerman, N.; Sonjak, S.; Zalar, P.; Frisvad, J.C.; Diderichsen, B.; Plemenita?, A. Extremophilic fungi in arctic ice: A relationship between adaptation to low temperature and water activity. Phys. Chem. Earth Parts A/B/C 2003, 28, 1273–1278, doi:10.1016/j.pce.2003.08.056.
[37]
W?sten, H.; van Wetter, M.; Lugones, L.; van der Mei, H.; Busscher, H.; Wessels, J. How a fungus escapes the water to grow into the air. Curr. Biol.: CB 1999, 9, 85–88, doi:10.1016/S0960-9822(99)80019-0.
[38]
Blanchard, D.C.; Syzdek, L. Mechanism for the water-to-air transfer and concentration of bacteria. Science 1970, 170, 626–628.
[39]
Schlichting, H.E., Jr. Ejection of microalgae into the air via bursting bubbles. J. Allergy Clin. Immunol. 1974, 53, 185–188, doi:10.1016/0091-6749(74)90006-2.