全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2013 

How Enhancing Atmospheric Monitoring and Modelling can be Effective for the Stockholm Convention on POPs

DOI: 10.3390/atmos4040445

Keywords: POPs monitoring, modeling, Stockholm Convention effectiveness, Global Monitoring Plan

Full-Text   Cite this paper   Add to My Lib

Abstract:

The presence of toxic substances such as persistent organic pollutants (POPs) in the environment, and in organisms including humans, is a serious public health and environmental problem, even at low levels and poses a challenging scientific problem. The Stockholm Convention on POPs (SC) entered into force in 2004 and is a large international effort under the United Nations Environment Programme (UNEP) to facilitate cooperation in monitoring, modeling and the design of effective and fair ways to deal with POPs globally. This paper is a contribution to the ongoing effectiveness evaluation (EE) work aimed at the assessment and enhancement of the effectiveness of the actions undertaken under the SC. First we consider some aspects related to the monitoring of POPs in the environment and then briefly review modeling frameworks that have been used to simulate long range transport (LRT) of POPs. In the final sections we describe the institutional arrangements providing the conditions for this work to unfold now and some suggestions for it in the future. A more effective use of existing monitoring data could be made if scientists who deposited them in publicly available and supervised sites were rewarded in academic and professional terms. We also suggest the development of multi-media, nested, Lagrangian models to improve the understanding of changes over time in the environment and individual organisms.

References

[1]  UNEP Stockholm Convention on Persistent Organic Pollutants, Available online: www.pops.int (assessed on 15 October 2013).
[2]  Gobas, F.A.P.C.; Morrison, H.A. Bioconcentration and Biomagnification in the Aquatic Environment. In Handbook of Property Estimation Methods for Chemicals; Boethling, R.S., Mackay, D., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 189–231.
[3]  Ritter, R; Scheringer, M.; MacLeod, M.; Moeckel, C.; Jones, K.C.; Hungerbühler, K. Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ. Health Perspect. 2011, 119, 225–231.
[4]  UNECE. Hemispheric Transport of Air Pollution (HTAP) 2010 Part C: Persistent Organic Pollutants. Air Pollution Studies No. 19; United Nations: Geneva, Switzerland, 2010. Available online: http://www.htap.org/publications/2010_report/2010_Final_Report/HTAP%202010%20Part%20C%20110408.pdf (accessed on 15 October 2013).
[5]  WHO/UNEP. State of the Science of Endocrine Disrupting Chemicals—2012, 2012. Available online: http://unep.org/pdf/9789241505031_eng.pdf (accessed on 27 November 2013).
[6]  EEA. The Impacts of Endocrine Disrupters on Wildlife, People and their Environments—The Weybridge+15 (1996–2011) Report. EEA Technical Report No 2, 2012. Available online: http://www.eea.europa.eu/publications/the-impacts-of-endocrine-disrupters (accessed on 20 November 2013).
[7]  Hung, H.; Kallenborn, R.; Breivik, K.; Su, Y.; Brorstr?m-Lundén, E.; Olafsdotir, K.; Thorlacius, J.M.; Lepp?nen, S.; Bossi, R.; Skov, H.; et al. Levels, trends and effects of legacy and new persistent organic pollutants in the Arctic: An AMAP Assessment. Sci. Total Environ. 2010, 408, 2854–2873, doi:10.1016/j.scitotenv.2009.10.044.
[8]  The 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs). Available online: http://www.unece.org/env/lrtap/pops_h1.html (accessed on 15 October 2013).
[9]  Pistocchi, A; Alamo, C; Castro-Jiménez, J.; Katsogiannis, A.; Pontes, S.; Umlauf, G.; Vizcaino, P. A Compilation of Europe-Wide Databases from Published Measurements of PCBs, Dioxins and Furans; Publications Office of the European Union: Luxembourg, 2010. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/22703/1/lb-na-24266-en-c.pdf (accessed on 15 October 2013).
[10]  Bray, F. Technology, Gender and History in Imperial China: Great Transformations Reconsidered; Routledge: Oxon, UK, 2013.
[11]  Mathews, A.S. Instituting Nature: Authority, Expertise, and Power in Mexican Forests; MIT Press: Cambridge, MA, USA, 2011.
[12]  Crawford, D. Moroccan Households in the World Economy: Labor and Inequality in a Berber Village; Louisiana State University Press: Baton Rouge, LA, USA, 2008.
[13]  Robertson, A.F. Mieres Reborn: The Reinvention of a Catalan Community; The University of Alabama Press: Tuscaloosa, AL, USA, 2012.
[14]  Mach, E. Die Geschichte und die Wurzel. des Satzes. von der Erhaltung. die Arbeit. Vortrag der K.B?hm Geseslschaft der Wissenschaften, Prag. 1871. History and Root of the Principle of the Conservation of Energy; The Open Court Publishing: Chicago, IL, USA, 1911; pp. 13–74. Available online: https://archive.org/details/historyandrootp00machgoog (accessed on 27 November 2013).
[15]  Singh, J. Great Ideas of Modern Mathematics, their Nature and Use; Dover Publications Inc: New York, NY, USA, 1959.
[16]  Chemla, K. Constructing Value with Instruments versus Constructing Equivalence with Mathematics: Measuring Grains according to early Chinese Mathematical Sources. In The Construction of Value in the Ancient World; Papadopoulos, J.K, Urton, G., Eds.; Costen Insitute of Archeology, University of California: Los Angeles, CA, USA, 2012; pp. 459–474.
[17]  Goodman, N. Fact, Fiction, and Forecast; Harvard University Press: Cambridge, MA, USA, 1979.
[18]  Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth sciences. Science 1994, 263, 641–646.
[19]  Bidleman, T.F.; Jantunen, L.M.; Binnur, P.; Karakus, K.; Wong, F. Chiral persistent organic pollutants as tracers of atmospheric sources and fate: Review and prospects for investigating climate change influences. Atmos. Pollut. Res. 2012, 3, 371–382, doi:10.5094/APR.2012.043.
[20]  Monitoring Reports. Available online: http://chm.pops.int/Implementation/GlobalMonitoringPlan/MonitoringReports/tabid/525/Default.aspx (accessed on 15 October 2013).
[21]  Klanova, J.; Harner, T. The challenge of producing reliable results under highly variable conditions and the role of passive air samplers in the Global Monitoring Plan. Trends Anal. Chem. 2013, 46, 139–150, doi:10.1016/j.trac.2012.07.021.
[22]  Bogdal, C.; Abad, E.; Abalos, M.; van Bavel, B.; Hagberg, J.; Scheringer, M.; Fiedleret, H. Worldwide distribution of persistent organic pollutants in air, including results of air monitoring by passive air sampling in five continents. Trends Anal. Chem. 2013, 46, 150–161, doi:10.1016/j.trac.2012.05.011.
[23]  Margalef, R. On certain unifying principles in ecology. Am. Nat. 1963, 97, 357–374.
[24]  Margalef, R. Perspectives in Ecological Theory; Chicago University Press: Chicago, IL, USA, 1968.
[25]  Margalef, R. Our Biosphere; Excellence in Ecology Book 10; Ecology Institute: Oldendorf/Luhe, Germany, 1997.
[26]  Krakauer, D.; Collins, J.P.; Erwin, D.; Flack, J.C.; Fontana, W.; Laubichler, M.D.I.; Prohaska, S.J.; West, G.B.; Stadler, P.F. The challenges and scope of theoretical biology. J. Theor. Biol. 2011, 276, 269–276, doi:10.1016/j.jtbi.2011.01.051.
[27]  Scheiner, S.M.; Willing, M.R. A General Theory of Ecology. In The Theory of Ecology; Scheiner, S.M., Willing, M.R., Eds.; The University of Chicago Press: Chicago, IL, USA; London, UK, 2011; pp. 3–20.
[28]  Gould, S.J. Ontogeny and Phylogeny; Harvard University Press: Cambrindge, MA, USA, 1977.
[29]  Markatos, N.C. The mathematical modelling of turbulent flows. Appl. Math. Model. 1986, 10, 190–220, doi:10.1016/0307-904X(86)90045-4.
[30]  Keller, L.; Surette, M.G. Communication in bacteria:An ecological and evolutionary perspective. Nat. Rev. Microbiol. 2006, 4, 249–258, doi:10.1038/nrmicro1383.
[31]  Hettelingh, J-P.; Posch, M.; Velders, G.J.M.; Ruyssenaars, P.; Adams, M.; de Leeuw, F.; Lükeweile, A.; Maas, R.; Sliggers, J.; Slootwerg, J. Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmos. Environ. 2013, 75, 129–140, doi:10.1016/j.atmosenv.2013.03.060.
[32]  Pasquill, F. Atmospheric Diffusion: The Dispersion of Windborne Material from Industrial and other Sources; Ellis Horwood Ltd.: London, UK, 1962.
[33]  Eliassen, A.; Saltbones, J. Sulphur Deposition Patterns Over Europe Estimated Using a Lagrangian Dispersion Model, Concentration Data and Precipitation Observations; Norwegian Inst. for Air Research: Oslo, Norway, 1975.
[34]  Eliassen, A.; Saltbones, J. Modelling of long-range transport of sulfur over Europe: A two-year model run and some model experiments. Atmos. Environ. 1983, 17, 1457–1466, doi:10.1016/0004-6981(83)90299-8.
[35]  Venkatram, A. An examination of the Pasquill-Gifford-Turner dispersion scheme. Atmos. Environ. 1996, 30, 1283–1290, doi:10.1016/1352-2310(95)00367-3.
[36]  T?rseth, K.; Aas, W.; Breivik, K.; Fj?raa, A.M.; Fiebig, M.; Hjellbrekke, A.G.; Lund Myhre, C.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric changes during 1972–2009. Atmos. Chem. Phys. 2012, 12, 5447–5481, doi:10.5194/acp-12-5447-2012.
[37]  Mackay, D. Finding fugacity feasible. Environ. Sci. Policy 1979, 13, 1218–1223.
[38]  Mackay, D.; Paterson, S. Calculating fugacity. Environ. Sci. Tech. 1981, 15, 1006–1014, doi:10.1021/es00091a001.
[39]  Mackay, D.; Paterson, S.; Cheung, B.; Neely, W. Evaluating the environmental behavior of chemicals with a level III fugacity model. Chemosphere 1985, 14, 335–375, doi:10.1016/0045-6535(85)90061-X.
[40]  Wania, F.; Mackay, D. The evolution of mass balance models of persistent organic pollutant fate in the environment. Environ. Pollut. 1999, 100, 223–240, doi:10.1016/S0269-7491(99)00093-7.
[41]  MacLeod, M.; Mackay, D. Modeling transport and deposition of contaminants to ecosystems of concern: A case study for the Laurentian Great Lakes. Environ. Pollut. 2004, 128, 241–250, doi:10.1016/j.envpol.2003.08.029.
[42]  Den Hollander, H.A.; Van Eijkeren, J.C.H.; van de Heent, D. SimpleBox 3.0: Multimedia Mass Balance Model for Evaluating the Fate of Chemicals in the Environment; National Institute for Public Heath and the Environment: Bilthoven, The Netherlands, 2004.
[43]  Pennington, D.W.; Margni, M.; Ammann, C.; Jolliet, O. Multimedia fate and human intake modeling: Spatial versus non-spatial insights for chemical emissions in Western Europe. Environ. Sci. Tech. 2005, 39, 1119–1128, doi:10.1021/es034598x.
[44]  Suzuki, N.; Murasawa, K.; Sakurai, T.; Nansai, K.; Matsuhashi, K.; Moriguchi, Y.; Tanabe, K.; Nakasugi, O.; Morita, M. Georeference multimedia environmental fate model (G-CIEMS): Model formulation and comparison to the generic model and monitoring approaches. Environ. Sci. Tech. 2004, 38, 5682–5693, doi:10.1021/es049261p.
[45]  MacLeod, M.; Woodfine, D.G.; Mackay, D.; McKone, T; Bennett, D.; Maddalena, R. BETR North America: A regionally segmented multimedia contaminant fate model for North America. Environ. Sci. Pollut. Res. 2012, 8, 156–163.
[46]  W?hrnschimmel, H.; MacLeod, M.; Hungerbühler, K. Global multimedia source-receptor relationships for persistent organic pollutants during use and after phase-out. Atmos. Pollut. Res. 2012, 3, 392–398, doi:10.5094/APR.2012.045.
[47]  W?hrnschimmel, H.; MacLeod, M.; Hungerbühler, K. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. Environ. Sci. Tech. 2013, 47, 2323–2330, doi:10.1021/es304646n.
[48]  Held, H. (2001), Semianalytical Spatial Ranges and Persistencies of Non-Polar Chemicals for Reaction-Diffusion Type Dynamics. In Integrative Systems Approaches to Natural and Social Dynamics—Systems Science; Matthies, M., Malchow, H., Eds.; Springer: Berlin, Germany, 2001; pp. 275–285.
[49]  Scheringer, M.; Held, H.; Stroebe, M. Chemrange 2.1—A Multimedia Transport Model for Calculating Persistence and Spatial Range of Organic Chemicals; ETH Zurich: Zurich, Switzerland, 2002.
[50]  Gusev, A.; Mantseva, E.; Shatalov, V.; Strukov, B. Regional Multicompartment Model MSCE-POP; EMEP/MSC-E Technical Report 5/2005; Meteorological Synthesizing Centre: Moscow, Russia, 2005. Available online: http://msceast.org/reports/5_2005.pdf (accessed on 15 October 2013).
[51]  Guglielmo, F.; Lammel, G.; Maier-Reimer, E. Global environmental cycling of DDT and gamma-HCH in the 1980s—A study using coupled atmosphere and ocean general circulation model. Chemosphere 2009, 76, 1509–1517, doi:10.1016/j.chemosphere.2009.06.024.
[52]  Gong, S.L.; Huang, P.; Zhao, T.L.; Sahsuvar, L.; Barrie, L.A.; Kaminski, J.W.; Li, Y.F.; Niu, T. GEM/POPs: A Global 3-D dynamic model for semi-volatile persistent organic pollutants—Part 1: Model description and evaluations of air concentrations. Atmos. Chem. Phys. 2007, 7, 4001–4013, doi:10.5194/acp-7-4001-2007.
[53]  Cohen, M.D.; Draxler, R.R.; Artz, R.; Commoner, B.; Bartlett, P.; Cooney, P.; Couchot, K.; Dickar, A.; Eisl, H.; Hill, C.; et al. Modeling the atmospheric transport and deposition of PCDD/F to the Great Lakes. Environ. Sci. Tech. 2002, 36, 4831–4845, doi:10.1021/es0157292.
[54]  Eckhardt, S.; Breivik, K.; Li, Y.F.; Man?, S.; Stohlet, A. Source regions of some persistent organic pollutants measured in the atmosphere at Birkenes, Norway. Atmos. Chem. Phys. 2009, 9, 6597–6610, doi:10.5194/acp-9-6597-2009.
[55]  Stohl, A.; Forster, C; Eckhardt, S.; Spichtinger, N.; Huntrieser, H.; Heland, J.; Schlager, H.; Wilhelm, S.; Arnold, F.; Cooper, O. A backward modeling study of intercontinental pollution transport using aircraft measurements. J. Geophys. Res. 2003, 108, 4370–4387, doi:10.1029/2002JD002862.
[56]  Commoner, B.; Bartlett, P.; Eisl, H; Coucho, K. Long-Range Air Transport of Dioxin from North American Sources to Ecologically Vulnerable Receptors in Nunavut, Arctic Canada; North American Commission for Environmental Cooperation (NACEC): Montreal, QC, Canada, 2000; pp. 1–85.
[57]  Gasic, B.; Moeckel, C.; MacLeod, M.; Brunner, J.; Scheringer, M.; Jones, K.C.; Hungerbühler, K. Measuring and Modeling Short-Term Variability of PCBs in Air and Characterization of Urban Source Strength in Zurich, Switzerland. Environ. Sci. Tech. 2009, 43, 769–776.
[58]  Moeckel, C.; Gasic, B.; MacLeod, M.; Scheringer, M.; Jones, K.C.; Hungerbühler, K. 2010 Estimation of the source strength of polybrominated diphenyl ethers based on their diel variability in air in Zurich, Switzerland. Environ. Sci. Tech. 2010, 44, 4225–4231, doi:10.1021/es1001049.
[59]  Ubl, S.; Scheringer, M.; Stohl, A.; Burkhart, J.F.; Hungerbuhle, K. Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic. Atmos. Environ. 2012, 62, 391–399, doi:10.1016/j.atmosenv.2012.07.061.
[60]  Huang, P.; Gong, S.L.; Zaho, T.L.; Neary, L.; Barrio, L.A. GEM/POPs: A global 3-D dynamic model for semi-volatile persistent organic pollutants 2. Global transports and budgets of PCBs. Atmos. Chem. Phys. 2007, 7, 4015–4025.
[61]  Armitage, J. Modeling globe-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Tech. 2006, 40, 6969–6975, doi:10.1021/es0614870.
[62]  Wania, F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ. Sci. Tech. 2007, 41, 4529–4535, doi:10.1021/es070124c.
[63]  Schenker, U.; Scheringer, M.; MacLeod, M.; Martin, J.W.; Cousins, I.T.; Hungerbühler, K. Contribution of volatile precursor substances to the flux of perfluorooctanoate to the Arctic. Environ. Sci. Tech. 2008, 42, 3710–3716, doi:10.1021/es703165m.
[64]  Armitage, J.M.; Schenker, U.; Scheringer, M.; Martin, J.W.; MacLeod, M.; Cousins, I.T. Modeling the global fate and transport of Perfluorooctane Sulfonate (PFOS) and precursor compounds in relation to temporal trends in wildlife exposure. Environ. Sci. Tech. 2009, 43, 9274–9280, doi:10.1021/es901448p.
[65]  Stemmler, I.; Lammel, G. Pathways of PFOA to the Arctic: Variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources. Atmos. Chem. Phys. 2010, 10, 9965–9982, doi:10.5194/acp-10-9965-2010.
[66]  Dachs, J.; Lohmann, R.; Ockenden, W.A.; Méjanelle, L.; Eisenreich, S.J.; Jones, K.C. Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ. Sci. Tech. 2002, 36, 4229–4237, doi:10.1021/es025724k.
[67]  Malagón, C.G. Biogeochemical Controls of the Transport and Cycling of Persistent Organic Pollutants in the Polar Oceans. Ph.D. Thesis, IDAEA-CSIC, Barcelona, Spain, 2013.
[68]  Burke, I.C.; Laurenroth, W.K. Theory of Ecosystem Ecology. In The Theory of Ecology; Scheiner, S.M., Willing, M.R., Eds.; The University of Chicago Press: Chicago, USA; London, UK, 2011; pp. 243–260.
[69]  Reiners, W.A. Complementary models for ecosystems. Am. Nat. 1986, 127, 59–73.
[70]  Steinbrecht, W.; Sch?nenborn, C.H; McDermid, F.; Leblanc, I.S.; Godin-Beekman, T.; Keckhut, S.; Hauchecorne, P.; van Gijsel, J.A.E.; Swart, D.P.J.; Bodeker, G.E.; et al. Ozone and temperature trends in the upper stratosphere at five stations of the Network for the Detection of Atmospheric Composition Change. Int. J. Remote Sens. 2009, 30, 3875–3886, doi:10.1080/01431160902821841.
[71]  Nader, L. Anthropological Inquiry into Boundaries, Power and Knowledge. In Naked Science: Anthropological Inquiry into Boundaries, Power and Knowledge; Nader, L., Ed.; Routledge: London, UK, 1996; pp. 1–28.
[72]  Keller, E.F. Reflexions on Gender and Science; Yale University Press: New Heaven, CT, USA, 1996.
[73]  Keller, E.F. Making Sense of Life: Explaining Biological Development with Models, Metaphors and Machines; Harvard University Press: Cambridge, MA, USA, 2003.
[74]  Newman, P.A.; Oman, L.D.; Douglass, A.R.; Fleming, E.L.; Frith, S.M.; Hurwitz, M.M.; Kawa, S.R.; Jackman, C.H.; Krotkov, N.A.; Nash, E.R.; et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 2009, 9, 2113–2128, doi:10.5194/acp-9-2113-2009.
[75]  GEO 2012-2015 Work Plan. Available online: http://www.earthobservations.org/geoss_imp.php (accessed on 15 October 2013).
[76]  HE-02-C2: Global Monitoring of Persistent Organic Pollutants, Emerging Contaminants and Global Change Indicators. Available online: http://www.earthobservations.org/ts.php?id=172 (accessed on 15 October 2013).
[77]  Harmens, H.; Foan, L.; Simon, V.; Mills, G. Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environ. Pollut. 2013, 173, 245–254, doi:10.1016/j.envpol.2012.10.005.
[78]  UNEP Ozone Secretariat. Available online: http://www.ozone.unep.org (accessed on 15 October 2013).
[79]  Executive Summary. The 2010 Assessment of the Scientific Assessment Panel; UNEP Ozone Secretariat: Nairobi, Kenya, 2010. Available online: http://ozone.unep.org/Assessment_Panels/SAP/Scientific_Assessment_2010/02-Executive_Summary.pdf (accessed on 15 October 2013).
[80]  Daniel, J.S.; Velders, G.J.M.; Morgenstern, O.; Toohey, D.W.; Wallington, T.J.; Wuebbles, D.J.; Akiyoshi, H.; Bais, A.F.; Fleming, E.L.; Jackman, C.H.; et al. A Focus on Information and Options for Policymakers. The 2010 Assessment of the Scientific Assessment Panel. Chapter 5; UNEP Ozone Secretariat: Nairobi, Kenya, 2010. Available online: http://ozone.unep.org/ Assessment_Panels/SAP/Scientific_Assessment_2010/07-Chapter_5.pdf (accessed on 15 October 2013).
[81]  Hung, H.; MacLeod, M.; Guardans, R.; Scheringer, M; Barra, R.; Harner, T.; Zhang, G. Toward the next generation of air quality monitoring: Persistent organic pollutants. Atmos. Environ. 2013, 80, 591–598.
[82]  Birn, E. Lessons for big-data projects. Nature 2012, 489, 49–51, doi:10.1038/489049a.
[83]  Priem, J. Beyond the paper. Nature 2013, 495, 437–440, doi:10.1038/495437a.
[84]  Nicolau, M.; Schoenauer, M. On the evolution of scale-free topologies with a gene regulatory network model. BioSyst. J. 2009, 98, 137–148, doi:10.1016/j.biosystems.2009.06.006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133