全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2013 

Numerical Modeling of Climate-Chemistry Connections: Recent?Developments and Future Challenges

DOI: 10.3390/atmos4020132

Keywords: troposphere, stratosphere, atmospheric circulation, ozone layer, ozone-climate connection, stratospheric water vapor, climate change, future projection, Earth-System Model, high-performance computing

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews the current state and development of different numerical model classes that are used to simulate the global atmospheric system, particularly Earth’s climate and climate-chemistry connections. The focus is on Chemistry-Climate Models. In general, these serve to examine dynamical and chemical processes in the Earth atmosphere, their feedback, and interaction with climate. Such models have been established as helpful tools in addition to analyses of observational data. Definitions of the global model classes are given and their capabilities as well as weaknesses are discussed. Examples of scientific studies indicate how numerical exercises contribute to an improved understanding of?atmospheric behavior. There, the focus is on synergistic investigations combining observations and model results. The possible future developments and challenges are presented, not only from the scientific point of view but also regarding the computer technology and respective consequences for numerical modeling of atmospheric processes. In the future, a stronger cross-linkage of subject-specific scientists is necessary, to tackle the looming challenges. It should link the specialist discipline and applied computer science.

References

[1]  Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis—Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK/New York, NY, USA, 2007; p. 996.
[2]  World Meteorological Organization (WMO)/United Nations Environment Programme (UNEP). Scientific Assessment of Ozone Depletion: 2010; Global Ozone Research and Monitoring Project-Report No. 52; WMO/UNEP: Geneva, Switzerland, 2011; p. 516.
[3]  Stratospheric Processes and Their Role in Climate (SPARC) Chemistry-Climate Model Validation Activity (CCMVal). SPARC Report on the Evaluation of Chemistry-Climate Models, 2010. Available online: http://www.atmosp.physics.utoronto.ca/SPARC (accessed on 1 June 2010).
[4]  Crutzen, P. Albedo enhancement by stratospheric sulfur Injections: A contribution to resolve a policy dilemma? Clim. Change 2006, 77, 211–220, doi:10.1007/s10584-006-9101-y.
[5]  Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B.P.; Rozanov, E.; Schraner, M.; Thomason, L.W.; Peter, T. Impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 2009, 4, 045108, doi:10.1088/1748-9326/4/4/045108.
[6]  Pierce, J.R.; Weisenstein, D.K.; Heckendorn, P.; Peter, T.; Keith, D.W. Efficient formation of stratospheric aerosol for climate engineering by emission of condensable vapor from aircraft. Geophys. Res. Lett. 2010, doi:10.1029/2010GL043975.
[7]  Jeuken, A.B.M.; Siegmund, P.C.; Heijboer, L.C.; Feichter, J.; Bengtsson, L. On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation. J. Geophys. Res. 1996, 101, 16939–16950.
[8]  J?ckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M.G.; Sander, R.; et al. The atmospheric chemistry general circulation model ECHAM5/MESSy1:Consistentsimulation of ozone from the surface to the mesosphere. Atmos. Chem. Phys. 2006, 6, 5067–5104, doi:10.5194/acp-6-5067-2006.
[9]  Thomas, G.; Marsh, D.; Lübken, F.-J. Mesospheric ice clouds as indicators of upper atmosphere climate change: Workshop on modeling polar mesospheric cloud trends; Boulder, Colorado, 10–11 December 2009. EOS Trans. AGU 2010, 91, 183, doi:10.1029/2010EO200004.
[10]  Berger, U.; Lübken, F.-J. Mesospheric temperature trends at mid-latitudes in summer. Geophys. Res. Lett. 2011, 38, L22804.
[11]  Lübken, F.-J.; Berger, U.; Kiliani, J.; Baumgarten, G.; Fiedler, J. Solar Variability and Trend Effects in Mesospheric Ice Layers. In Climate and Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program; Springer: Dordrecht, The Netherlands, 2012.
[12]  Butchart, N.; Scaife, A.A.; Bourqui, M.; de Grandpré, J.; Hare, S.H.E.; Kettleborough, J.; Langematz, U.; Manzini, E.; Sassi, F.; Shibata, K.; et al. Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Clim. Dyn. 2006, 27, 727–741, doi:10.1007/s00382-006-0162-4.
[13]  Garny, H.; Dameris, M.; Randel, W.; Bodeker, G.E.; Deckert, R. Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci. 2011, 68, 1214–1233, doi:10.1175/2011JAS3701.1.
[14]  Shepherd, T.G.; McLandress, C. A robust mechanism for strengthening of the Brewer–Dobson Circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci. 2011, 68, 784–797, doi:10.1175/2010JAS3608.1.
[15]  Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394, doi:10.1175/BAMS-88-9-1383.
[16]  Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A. Challenges in combining projections from multiple models. J. Clim. 2010, 23, 2739–2756, doi:10.1175/2009JCLI3361.1.
[17]  Chipperfield, M.P.; Pyle, J.A. Model sensitivity studies of Arctic ozone depletion. J. Geophys. Res. 1998, 103, 389–403.
[18]  Grewe, V.; Dameris, M.; Hein, R.; Sausen, R.; Steil, B. Future changes of the atmospheric composition and the impact of climate change. Tellus 2001, 53, 103–121.
[19]  Sinnhuber, B.-M.; Stiller, G.; Ruhnke, R.; von Clarmann, T.; Kellmann, S.; Aschmann, J. Arctic winter 2010/2011 at the brink of an ozone hole. Geophys. Res. Lett. 2011, 38, L24814.
[20]  World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2006. WMO: Geneva, Switzerland, 2007; p. 572.
[21]  Lelieveld, J.; Brühl, C.; J?ckel, P.; Steil, B.; Crutzen, P.J.; Fischer, H.; Giorgetta, M.A.; Hoor, P.; Lawrence, M.G.; Sausen, R.; Tost, H. Stratospheric dryness: Model simulations and satellite observations. Atmos. Chem. Phys. 2007, 7, 1313–1332, doi:10.5194/acp-7-1313-2007.
[22]  Schumann, U.; Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 2007, 7, 3823–3907, doi:10.5194/acp-7-3823-2007.
[23]  Kurz, C. Entwicklung und Anwendung eines gekoppelten Klima-Chemie-Modellsystems: Globale Spurengastransporte und chemische Umwandlungsprozesse. Ph.D. Thesis, Institut für Luft- und Raumfahrtmedizin (DLR), Forschungsbericht, Germany, 2007.
[24]  Tost, H.; Lawrence, M.G.; Brühl, C.; J?ckel, P.; The GABRIEL Team; The SCOUT-O3-DARWIN/ACTIVE Team. Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging. Atmos. Chem. Phys. 2010, 10, 1931–1951, doi:10.5194/acp-10-1931-2010.
[25]  Grewe, V.; Moussiopoulos, N.; Builtjes, P.; Borrego, C.; Isaksen, I.S.A.; Volz-Thomas, A. The ACCENT-protocol: A framework for benchmarking and model evaluation. Geosci. Model Dev. 2012, 5, 611–618, doi:10.5194/gmd-5-611-2012.
[26]  WCRP CMIP3 Sub-Project Publications. Available online: http://www-pcmdi.llnl.gov/ipcc/subproject_publications.php (accessed on 9 January 2013).
[27]  List of CCMVal Publications. Available online: http://www.pa.op.dlr.de/CCMVal/CCMVal_publications.html (accessed on 11 September 2012).
[28]  Telford, P.J.; Braesicke, P.; Morgenstern, O.; Pyle, J.A. Technical note: Description and assessment of a nudged version of the new dynamics unified model. Atmos. Chem. Phys. 2008, 8, 1701–1712, doi:10.5194/acp-8-1701-2008.
[29]  Liu, C.; Beirle, S.; Butler, T.; Liu, J.; Hoor, P.; J?ckel, P.; Pozzer, A.; Frankenberg, C.; Lawrence, M.G.; Lelieveld, J.; et al. Application of SCIAMACHY and MOPITT CO total column measurements to evaluate model results over biomass burning regions and Eastern China. Atmos. Chem. Phys. 2011, 11, 6083, doi:10.5194/acp-11-6083-2011.
[30]  Pozzer, A.; J?ckel, P.; Tost, H.; Sander, R.; Ganzeveld, L.; Kerkweg, A.; Lelieveld, J. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: A comparison of model results with observations. Atmos. Chem. Phys. 2007, 7, 2527, doi:10.5194/acp-7-2527-2007.
[31]  Brühl, C.; Steil, B.; Stiller, G.; Funke, B.; J?ckel, P. Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1. Atmos. Chem. Phys. 2007, 7, 5585, doi:10.5194/acp-7-5585-2007.
[32]  Baumgaertner, A.J.G.; J?ckel, P.; Riede, H.; Stiller, G.; Funke, B. Energetic particle precipitation in ECHAM5/MESSy Part 2: Solar proton events. Atmos. Chem. Phys. 2010, 10, 7285, doi:10.5194/acp-10-7285-2010.
[33]  van Aalst, M.K.; van den Broek, M.M.P.; Bregman, A.; Brühl, C.; Steil, B.; Toon, G.C.; Garcelon, S.; Hansford, G.M.; Jones, R.L.; Gardiner, T.D.; et al. Trace gas transport in the 1999/2000 Arctic winter: comparison of nudged GCM runs with observations. Atmos. Chem. Phys. 2004, 4, 81–93, doi:10.5194/acp-4-81-2004.
[34]  Wetzel, G.; Oelhaf, H.; Kirner, O.; Friedl-Vallon, F.; Ruhnke, R.; Ebersoldt, A.; Kleinert, A.; Maucher, G.; Nordmeyer, H.; Orphal, J. Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex. Atmos. Chem. Phys. 2012, 12, 6581, doi:10.5194/acp-12-6581-2012.
[35]  Klippel, T.; Fischer, H.; Bozem, H.; Lawrence, M.G.; Butler, T.; J?ckel, P.; Tost, H.; Martinez, M.; Harder, H.; Regelin, E.; et al. Distribution of hydrogen peroxide and formaldehyde over Central Europe during the HOOVER project. Atmos. Chem. Phys. 2011, 11, 4391, doi:10.5194/acp-11-4391-2011.
[36]  Telford, P.J.; Braesicke, P.; Morgenstern, O.; Pyle, J.A. Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM. Atmos. Chem. Phys. 2009, 9, 4251–4260.
[37]  Van Aalst, M.K.; Lelieveld, J.; Steil, B.; Brühl, C.; J?ckel, P.; Giorgetta, M.A.; Roelofs, G.-J. Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation. Atmos. Chem. Phys. Discuss. 2005, 5, 961–1006, doi:10.5194/acpd-5-961-2005.
[38]  Tost, H.; J?ckel, P.; Lelieveld, J. Influence of different convection parameterisations in a GCM. Atmos. Chem. Phys. 2006, 6, 5475, doi:10.5194/acp-6-5475-2006.
[39]  Tost, H.; J?ckel, P.; Lelieveld, J. Lightning and convection parameterisations—Uncertainties in global modeling. Atmos. Chem. Phys. 2007, 7, 4553, doi:10.5194/acp-7-4553-2007.
[40]  Ramaswamy, V.; Schwarzkopf, M.D.; Randel, W.J.; Santer, B.D.; Soden, B.J.; Stenchikov, G.L. Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 2006, 311, 1138–1141, doi:10.1126/science.1122587.
[41]  Randel, W.J.; Shine, K.P.; Austin, J.; Barnett, J.; Claud, C.; Gillett, N.P.; Keckhut, P.; Langematz, U.; Lin, R.; Long, C.; et al. An update of observed stratospheric temperature trends. J. Geophys. Res. 2009, 114, D02107, doi:10.1029/2008JD010421.
[42]  Cordero, E.C.; Forster, P.M.de F. Stratospheric variability and trends in models used for the IPCC AR4. Atmos. Chem. Phys. 2006, 6, 5369–5380, doi:10.5194/acp-6-5369-2006.
[43]  Son, S.-W.; Gerber, E.P.; Perlwitz, J.; Polvani, L.M.; Gillett, N.P.; Seo, K.-H.; Eyring, V.; Shepherd, T.G.; Waugh, D.; Akiyoshi, H.; et al. Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res. 2010, 115, D00M07, doi:10.1029/2010JD014271.
[44]  Austin, J.; Scinocca, J.; Plummer, D.; Oman, L.; Waugh, D.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M.; et al. Decline and recovery of total column ozone using a multimodel time series analysis. J. Geophys. Res. 2010, 115, D00M10, doi:10.1029/2010JD013857.
[45]  Dameris, M. Climate change and atmospheric chemistry: How will the stratospheric ozone layer develop? Angew. Chem. Int. 2010, 49, 8092–8102, doi:10.1002/anie.201001643.
[46]  Dameris, M.; Loyola, D. Chapter 1. Chemistry-Climate Connections—Interaction of Physical, Dynamical, and Chemical Processes in Earth Atmosphere. In Climate Change—Geophysical Foundations and Ecological Effects; Blanco, J., Kheradmand, H., Eds.; InTech: Rijeka, Croatia, 2011; pp. 3–24.
[47]  Fioletov, V.E.; Bodeker, G.E.; Miller, A.J.; McPeters, R.D.; Stolarski, R. Global and zonal total ozone variations estimated from ground based and satellite measurements: 1964–2000. J. Geophys. Res. 2002, 107, 4647.
[48]  Stolarski, R.S.; Frith, S.M. Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty. Atmos. Chem. Phys. 2006, 6, 4057–4065, doi:10.5194/acp-6-4057-2006.
[49]  Bodeker, G.E.; Shiona, H.; Eskes, H. Indicators of Antarctic ozone depletion. Atmos. Chem. Phys. 2005, 5, 2603–2615, doi:10.5194/acp-5-2603-2005.
[50]  Miller, A.J.; Nagatani, R.M.; Flynn, L.E.; Kondragunta, S.; Beach, E.; Stolarski, R.; McPeters, R.D.; Bhartia, P.K.; DeLand, M.T.; Jackman, C.H.; et al. A cohesive total ozone data set from SBUV(/2) satellite system. J. Geophys. Res. 2002, 107, 4701, doi:10.1029/2001JD000853.
[51]  Hurst, D.F.; Oltmans, S.J.; V?mel, H.; Rosenlof, K.H.; Davis, S.M.; Ray, E.A.; Hall, E.G.; Jordan, A.F. Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res. 2011, 116, D02306, doi:10.1029/2010JD015065.
[52]  Nedoluha, G.; Gomez, R.M.; Hicks, B.C.; Bevilacqua, R.M.; Russell, J.M.; Connor, B.J.; Lambert, A. A comparison of middle atmospheric water vapor as measured by WVMS, EOS-MLS, and HALOE. J. Geophys. Res. 2007, 112, D24S39.
[53]  Solomon, K.; Rosenlof, H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.-K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223.
[54]  Zhou, X.-L.; Geller, M.A.; Zhang, M. Cooling trend of the tropical cold point tropopause temperatures and its implications. J. Geophys. Res. 2001, 106, 1511–1522, doi:10.1029/2000JD900472.
[55]  Rosenlof, K.H. Transport changes inferred from HALOE water and methane measurements. J. Meteorol. Soc. Japan 2002, 80, 831–848, doi:10.2151/jmsj.80.831.
[56]  Sherwood, S. A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science 2002, 295, 1272–1275, doi:10.1126/science.1065080.
[57]  Notholt, J.; Luo, B.P.; Füeglistaler, S.; Weisenstein, D.; Rex, M.; Lawrence, M.G.; Bingemer, H.; Wohltmann, I.; Corti, T.; Warneke, T.; von Kuhlmann, R.; Peter, T. Influence of tropospheric SO2 emissions on particle formation and the stratospheric humidity. Geophys. Res. Lett. 2005, 32, L07810, doi:10.1029/2004GL022159.
[58]  Randel, W.J.; Wu, F.; V?mel, H.; Nedoluha, G.E.; Forster, P. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res. 2006, 111, D12312, doi:10.1029/2005JD006744.
[59]  Rosenlof, K.H.; Reid, G.C. Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res. 2008, 113, D06107, doi:10.1029/2007JD009109.
[60]  Dlugokencky, E.J.; Bruhwiler, L.; White, J.W.C.; Emmons, L.K.; Novelli, P.C.; Montzka, S.A.; Masarie, K.A.; Lang, P.M.; Crotwell, A.M.; Miller, J.B.; et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 2009, 36, L18803, doi:10.1029/2009GL039780.
[61]  Dhomse, S.; Weber, M.; Burrows, J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos. Chem. Phys. 2008, 8, 471–480, doi:10.5194/acp-8-471-2008.
[62]  Deckert, R.; Dameris, M. Higher tropical SSTs strengthen the tropical upwelling via deep convection, Geophys. Res. Lett. 2008, 35, L10813, doi:10.1029/2008GL033719.
[63]  Ueyama, R.; Wallace, J.M. To what extent does high-latitude wave forcing drive tropical upwelling in the Brewer-Dobson Circulation? J. Atmos. Sci. 2010, 67, 1232–1246, doi:10.1175/2009JAS3216.1.
[64]  Klein, S.A.; Jakob, C. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev. 1999, 127, 2514–2531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.
[65]  Webb, M.; Senior, C.; Bony, S.; Morcrette, J.J. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim. Dyn. 2001, 17, 905–922, doi:10.1007/s003820100157.
[66]  J?ckel, P.; Kerkweg, A.; Pozzer, A.; Sander, R.; Tost, H.; Riede, H.; Baumgaertner, A.; Gromov, S.; Kern, B. Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev. 2010, 3, 717, doi:10.5194/gmd-3-717-2010.
[67]  Grewe, V. A generalized tagging method. Geosci. Model Dev. 2013, 6, 247–253, doi:10.5194/gmd-6-247-2013.
[68]  Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys. 2008, 227, 3486–3514, doi:10.1016/j.jcp.2007.02.006.
[69]  Kerkweg, A.; J?ckel, P. The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 2: On-line coupling with the Multi-Model-Driver (MMD). Geosci. Model Dev. 2012, 5, 111, doi:10.5194/gmd-5-111-2012.
[70]  Strachan, J.; Vidale, P.L.; Hodges, K.; Roberts, M.; Demory, M.-E. Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Clim. 2013, 26, 133–152, doi:10.1175/JCLI-D-12-00012.1.
[71]  Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 8.
[72]  Top 500 Supercomputer Sites. Performance Development. Available online: http://www.top500.org/statistics/perfdevel/ (accessed on 1 November 2009).
[73]  Charney, J.G.; Fj?rtoft, R.; von Neumann, J. Numerical integration of the barotropic vorticity equation. Tellus 1950, 2, 237–254, doi:10.1111/j.2153-3490.1950.tb00336.x.
[74]  Lynch, P.; Lynch, O. Forecasts by PHONIAC. Weather 2008, 63, 324–326, doi:10.1002/wea.241.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133