It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small- and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network), suspended particulate matter (SPM) sampler and LIDAR (light detection and ranging). Individual particle analyses with a SEM (scanning electron microscope)/EDX (energy-dispersive X-ray analyzer) show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.
Kinne, S.; Lohmann, U.; Feichter, J.; Schulz, M.; Timmreck, C.; Ghan, S.; Easter, R.; Chin, M.; Ginoux, P.; Takemura, T.; et al. Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J. Geophys. Res. 2003, 108, D20, doi:10.1029/2001JD001253.
[3]
Littmann, T. Dust storm frequency in Asia: Climatic control and variability. Int. J. Climatol. 1991, 11, 393–412, doi:10.1002/joc.3370110405.
[4]
Takemura, T.; Uno, I.; Nakajima, T.; Higurashi, A.; Sano, I. Modeling study of long-range transport of Asian dust and anthropogenic aerosols from Asia. Geophys. Res. Lett. 2002, 29, 2158, doi:10.1029/2002GL016251.
[5]
Nakata, M.; Yokomae, T.; Fujito, T.; Sano, I.; Mukai, S. Characterization of Aerosols Based on the Simultaneous Measurements. In Proceedings of 2011 IEEE International Geosciences and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 4026–4029.
[6]
Mukai, M.; Nakajima, T.; Takemura, T. A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM. J. Geophys. Res. 2008, 113, D12211, doi:10.1029/2007JD009325.
[7]
Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; ?zsoy, E. Interactive dust-radiation modeling: A step to improve weather forecast. J. Geophys Res. 2006, 111, D16206.
[8]
Mukai, S.; Sano, I.; Masuda, K.; Takashima, T. Atmospheric correction for ocean color remote sensing: Optical properties of aerosols derived from CZCS imagery. IEEE Trans. Geosci. Remote Sens. 1992, 30, 818–824, doi:10.1109/36.158878.
[9]
Sano, I.; Mukai, S.; Okada, Y.; Holben, B.N.; Ohta, S.; Takamura, T. Optical properties of aerosols during APEX and ACE-Asia experiments. J. Geophys Res. 2003, 108, 8649.
[10]
Dubovik, O.; Smirnov, A.; Holben, B.N.; King, M.D.; Kaufman, Y.J.; Eck, T.F.; Slutsker, I. Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiaometric measurements. J. Geophys. Res. 2000, 105, 9791–9806.
[11]
Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosols optical properties from sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696, doi:10.1029/2000JD900282.
[12]
Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T.; et al. ARONET—A federated instrument network and data archive for aerosol characterization. Rem. Sens. Environ. 1998, 66, 1–16.
[13]
Shimizu, A.; Sugimoto, N.; Matsui, I.; Arao, K.; Uno, I.; Murayama, T.; Kagawa, N.; Aoki, K.; Uchiyama, A.; Yamazaki, A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res. 2004, 109, 1–14.
[14]
Mukai, S.; Sano, I.; Satoh, M.; Holben, B.N. Aerosol properties and air pollutants over an urban area. Atmos. Res. 2006, 82, 643–651.
[15]
Mukai, S.; Nishina, M.; Sano, I.; Mukai, M.; Iguchi, N.; Mizobuchi, S. Suspended particulate matter sampling at an urban AERONET site in Japan part 1: Clustering analysis of aerosols. J. Appl. Remote Sens. 2007, 1, doi:10.1117/1.2762202.
[16]
Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349, doi:10.1016/S0034-4257(00)00109-7.
[17]
Omar, A.H.; Won, J.-G.; Winker, D.M.; Yoon, S.-C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. 2005, 110, doi:10.1029/2004JD004874.
[18]
Guputa, P.; Christopher, S.A.; Wang, J.; Gehring, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892.
[19]
Sano, I.; Mukai, M.; Iguchi, N.; Mukai, S. Suspended particulate matter sampling at an urban AERONET site in Japan, part 2: Relationship between column aerosol optical thickness and PM2.5 mass concentration. J. Appl. Remote Sens. 2010, 40, doi:10.1117/1.3327930.
[20]
Smirnov, A.; Holben, B.N.; Savoie, D.; Prospero, J.M.; Kaufmann, Y.J.; Tanré, D.; Eck, T.F.; Slutsker, I. Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados. Geophys. Res. Lett. 2000, 27, 1643–1646, doi:10.1029/1999GL011336.
[21]
Takemura, T.; Nozawa, T.; Emori, S.; Nakajima, T.Y.; Nakajima, T. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res. 2005, 110, doi:10.1029/2004JD005029.
[22]
Takemura, T.; Nakajima, T.; Dubovik, O.; Holben, B.N.; Kinne, S. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate 2002, 15, 333–352, doi:10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2.
[23]
Mukai, M.; Nakajima, T.; Takemura, T. A studyof long-term trends in mineral dust aerosol distributions in Asia using a general circulation model. J. Geophys. Res. 2004, 109, D19204.
[24]
Nakata, M.; Nakano, T.; Okuhara, T.; Mukai, S. Spatial-Temporal Variation of Atmospheric Particles in Local Scale. In Proceedings of 2012 IEEE International Geosciences and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2554–2555.
[25]
Park, R.S; Song, C.H.; Han, K.M.; Park, M.E.; Lee, S.-S.; Kim, S.-B.; Shimizu, A. A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique. Atmos. Chem. Phys. Discuss. 2011, 11, 23801–23858.
[26]
Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 2095, doi:10.1029/2003GL018174.