全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Desire for Parsimony

DOI: 10.3390/bs3040576

Keywords: parsimony, desire, wildness, music, limbic system, beauty

Full-Text   Cite this paper   Add to My Lib

Abstract:

An understanding of wildness is being developed as a quality of interactive processing that increases survival opportunities in nature. A link is made between the need to improve interactive quality for wildness, and cognitive desires and interests in art, music, religion and philosophy as these can also be seen as attempts to improve interactive quality internally and externally. Interactive quality can be improved through gains in parsimony, that is, simplifications in the organisation of skills. The importance of parsimony in evolution is discussed, along with indicators of an internal parsimony desire that experiences joy if achieved through processes such as insight and understanding. A mechanism for the production and measurement of the parsimony desire is proposed, based on the number of subcortical pleasure hotspots that can be stimulated at once within the ‘archipelago’ available in the limbic system.

References

[1]  Gao, Q.; Horvath, T.L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 2007, 30, 367–398, doi:10.1146/annurev.neuro.30.051606.094324.
[2]  Andrews, Z.B. The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci. 2011, 34, 31–40, doi:10.1016/j.tins.2010.10.001.
[3]  Huron, D. Lost in music. Nature 2008, 453, 456–457, doi:10.1038/453456a.
[4]  Pinker, S. How The Mind Works; Penguin Books: London, UK, 1997.
[5]  Ehrlich, P.R. Human Natures. Genes, Cultures and the Human Prospect; Island Press: Washington, DC, USA, 2000.
[6]  Brown, S.; Merker, B.; Wallin, N.L. An troduction to Evolutionary Musicology. In The Origins of Music; Wallin, N.L., Merker, B., Brown, S., Eds.; MIT Press: Cambridge, MA, USA, 2000; pp. 3–24.
[7]  McDermott, J.; Hauser, M. The origins of music: Innateness, uniqueness, and evolution. Music Percept. 2005, 23, 29–59, doi:10.1525/mp.2005.23.1.29.
[8]  Bispham, J. “Music” means nothing if we don’t know what it means. J. Hum. Evol. 2006, 50, 587–593, doi:10.1016/j.jhevol.2005.12.003.
[9]  Juslin, P.N.; V?stjf?ll, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–621.
[10]  Honing, H.; Ploeger, A. Cognition and the evolution of music: Pitfalls and prospects. Top. Cogn. Sci. 2012, 4, 513–524, doi:10.1111/j.1756-8765.2012.01210.x.
[11]  International Federation of the Phonographic Industry. IFPI Digital Music Report 2013. Engine of a digital world; IFPI: London, UK, 2013.
[12]  Marcus, G.F. Musicality: Instinct or acquired skill? Top. Cogn. Sci. 2012, 4, 498–512, doi:10.1111/j.1756-8765.2012.01220.x.
[13]  Miller, G. Evolution of Human Music through Sexual Selection. In The Origins of Music; Wallin, N.L., Merker, B., Brown, S., Eds.; MIT Press: Cambridge, MA, USA, 2000; pp. 329–360.
[14]  Cross, I. Music and Cognitive Evolution. In Handbook of Evolutionary Psychology; Dunbar, R.I.M., Barrett, L., Eds.; Oxford University Press: Oxford, UK, 2007; pp. 649–667.
[15]  Merker, B. Synchronous Chorusing and Human Origins. In The Origins of Music; Wallin, N.L., Merker, B., Brown, S., Eds.; MIT Press: Cambridge, MA, USA, 2000; pp. 315–327.
[16]  Dissanayake, E. If music is the food of love, what about survival and reproductive success? Music. Sci. 2008, 12 (Suppl. 1), 169–195, doi:10.1177/1029864908012001081.
[17]  Kelley, J.L.; Magurran, A.E.; Ma?ias-Garcia, C. The influence of rearing experience on the behaviour of an endangered Mexican fish, Skiffia multipunctata. Biol. Conserv. 2005, 122, 223–230, doi:10.1016/j.biocon.2004.07.011.
[18]  Biggins, D.E.; Miller, B.J.; Hanebury, L.R.; Powell, R.A. Mortality of Siberian polecats and black-footed ferrets released onto prairie dog colonies. J. Mammal. 2011, 92, 721–731, doi:10.1644/10-MAMM-S-115.1.
[19]  Oro, D.; Martinez-Abrain, A.; Velluendas, E.; Sarzo, B.; Minguez, E.; Carda, J.; Genovart, M. Lessons from a failed translocation program with a seabird species: Determinants of success and conservation value. Biol. Conserv. 2011, 144, 851–858, doi:10.1016/j.biocon.2010.11.018.
[20]  Stoinski, T.S.; Beck, B.B.; Bloomsmith, M.A.; Maple, T.L. A behavioural comparison of captive-born, reintroduced golden lion tamarins and their wild-born offspring. Behaviour 2003, 140, 137–160, doi:10.1163/156853903321671479.
[21]  Morimura, N.; Mori, Y. Effects of early rearing conditions on problem-solving skill in captive male chimpanzees (Pan troglodytes). Am. J. Primatol. 2010, 72, 626–633.
[22]  Roche, E.A.; Cuthbert, F.J.; Arnold, T.W. Relative fitness of wild and captive-reared piping plovers: Does egg salvage contribute to recovery of the endangered Great Lakes population? Biol. Conserv. 2008, 141, 3079–3088, doi:10.1016/j.biocon.2008.09.014.
[23]  Beck, B.B.; Rapaport, L.G.; Stanley-Price, M.R.; Wilson, A.C. Reintroduction in Captive-Born Animals. In Creative Conservation: Interactive Management of Wild and Captive Animals; Onley, P.J., Mace, G., Feistner, A., Eds.; Chapman & Hall: London, UK, 1994; pp. 265–286.
[24]  Cookson, L.J. A definition for wildness. Ecopsychology 2011, 3, 187–193, doi:10.1089/eco.2011.0028.
[25]  Sober, E. Parsimony in systematic: Philosophical issues. Annu. Rev. Ecol. Evol. Syst. 1983, 14, 335–357.
[26]  Swofford, D.L. PAUP. Phylogenetic Analysis Using Parsimony; Smithsonian Institution: Washington, DC, USA, 1993.
[27]  Groves, C.P.; Paterson, J.D. Testing hominoid phylogeny with the PHYLIP programs. J. Hum. Evol. 1991, 20, 167–183, doi:10.1016/0047-2484(91)90056-2.
[28]  Goloboff, P.A.; Farris, J.S.; Nixon, K.C. TNT, a free program for phylogenetic analysis. Cladistics 2008, 24, 774–786, doi:10.1111/j.1096-0031.2008.00217.x.
[29]  Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 1978, 27, 401–410, doi:10.2307/2412923.
[30]  Telford, M.J.; Copley, R.R. Animal phylogeny: Fatal attraction. Curr. Biol. 2005, 15, R296–R299, doi:10.1016/j.cub.2005.04.001.
[31]  Puigbò, P.; Wolf, Y.I.; Koonin, E.V. Search for a ‘tree of life’ in the thicket of the phylogenetic forest. J. Biol. 2009, 8, 59, doi:10.1186/jbiol159.
[32]  White, W.T.J.; Holland, B.R. Faster exact maximum parsimony search with XMP. Bioinformatics 2011, 27, 1359–1367, doi:10.1093/bioinformatics/btr147.
[33]  Battisti, A.; Holm, G.; Fagrell, B.; Larsson, S. Urticating hairs in arthropods: Their nature and medical significance. Annu. Rev. Entomol. 2011, 56, 203–220, doi:10.1146/annurev-ento-120709-144844.
[34]  Eisner, T.; Schroeder, F.C.; Snyder, N.; Grant, J.B.; Aneshansley, D.J.; Utterback, D.; Meinwald, J.; Eisner, M. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 2008, 18, 109–119, doi:10.1007/s00049-007-0398-4.
[35]  Svádová, K.H.; Exnerová, A.; Kope?ková, M.; ?tys, P. How do predators learn to recognize a mimetic complex: Experiments with na?ve great tits and aposematic Heteroptera. Ethology 2013, 119, 814–830, doi:10.1111/eth.12121.
[36]  Mallet, J.; Joron, M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Annu. Rev. Ecol. Syst. 1999, 30, 201–233, doi:10.1146/annurev.ecolsys.30.1.201.
[37]  Polani, D. Information: Currency of life? HFSP J. 2009, 3, 307–316, doi:10.2976/1.3171566.
[38]  Krebs, J.; Clutton-Brock, T.H. Cunning Coyotes: Tireless Tricksters, Protean Predators. Dugatkin, L.A., Ed.; Princeton University Press: Princeton, NJ, USA, 2001; pp. 381–407.
[39]  Parker, M. The cunning dingo. Soc. Anim. 2007, 15, 69–78, doi:10.1163/156853007X169351.
[40]  Akil, H.; Martone, M.A.; Van Essen, D. Challenges and opportunities in mining neuroscience data. Science 2011, 331, 708–712, doi:10.1126/science.1199305.
[41]  Lent, R.; Azevedo, F.A.C.; Andrade-Moraes, C.H.; Pinto, A.V.O. How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 2012, 35, 1–9, doi:10.1111/j.1460-9568.2011.07923.x.
[42]  Pakkenberg, B.; Gundersen, H.J.C. Neocortical neuron number in humans: Effect of sex and age. J. Comp. Neurobiol. 1997, 384, 312–320, doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K.
[43]  Petenjek, Z.; Juda?, M.; ?imi?, G.; Ra?in, M.; Uylings, H.B.M.; Rakic, P.; Kostovi?, I. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2011, 108, 13281–13286.
[44]  Perruchet, P.; Vinter, A. The self-organizing consciousness. Behav. Brain Sci. 2002, 25, 297–388.
[45]  Terzis, G. How crosstalk creates vision-related eureka moments. Philos. Psychol. 2001, 14, 393–421, doi:10.1080/09515080120088085.
[46]  Bayly, M.B. Concept-matching in the brain depends on serotonin and gamma-frequency shifts. Med. Hypotheses 2005, 65, 149–151, doi:10.1016/j.mehy.2005.01.019.
[47]  Anderson, T.D. Beyond eureka moments: Supporting the invisible work of creativity and innovation. Inf. Res. 2011, 16, 471.
[48]  Glynn, I. Elegance in Science: The Beauty of Simplicity; Oxford University Press: Oxford, UK, 2010.
[49]  Nash, R. The value of wilderness. Environ. Rev. 1976, 1, 12–25.
[50]  Vaizey, M. The man who painted truth as beauty; Camille Pissarro. Sunday Times Lond. 1990, 18, 1990.
[51]  Matthews, P.M. Hutcheson on the idea of beauty. J. Hist. Philos. 1998, 36, 233–259, doi:10.1353/hph.2008.0808.
[52]  Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 2006, 57, 199–226, doi:10.1146/annurev.psych.57.102904.190208.
[53]  Slater, A.; von der Schulenburg, C.; Brown, E.; Badenoch, M.; Butterworth, G.; Parsons, S.; Samuels, C. Newborn infants prefer attractive faces. Infant Behav. Dev. 1998, 21, 345–354.
[54]  Brady, I. In defense of the sensual: Meaning construction in ethnography and poetics. Qual. Inq. 2004, 10, 622–644, doi:10.1177/1077800404265719.
[55]  Ozus, E.; Dokmeci, V.; Kiroglu, G.; Edgemir, G. Spatial analysis of residential prices in Istanbul. Eur. Planning Stud. 2007, 15, 707–721, doi:10.1080/09654310701214085.
[56]  Chadourne, M.; Cho, S.-H.; Roberts, R.K. Identifying priority target areas for the Knoxville-Knox County hillside and ridgetop protection plan: Using the value of visual amenity during the real estate boom of 2002–2007 and the recession of 2008. Ann. Reg. Sci. 2013, 50, 911–934, doi:10.1007/s00168-012-0519-z.
[57]  Hulse, S.H.; Takeuchi, A.H.; Braaten, R.F. Perceptual invariances in the comparative psychology of music. Music Percept. 1992, 10, 151–184, doi:10.2307/40285605.
[58]  Platel, H.; Price, C.; Baron, J.-C.; Wise, R.; Lambert, J.; Frackowiak, R.S.J.; Lechevalier, B.; Eustache, F. The structural components of music perception. A functional anatomical study. Brain 1997, 120, 229–243, doi:10.1093/brain/120.2.229.
[59]  Tramo, M.J.; Cariani, P.A.; Delgutte, B.; Braida, L.D. Neurobiological foundations for the theory of harmony in western tonal music. Ann. N. Y. Acad. Sci. 2001, 930, 92–116.
[60]  Balkwill, L.-L.; Thompson, W.F. A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Percept. 1999, 17, 43–64, doi:10.2307/40285811.
[61]  Cross, I. Music, cognition, culture and evolution. Ann. NY Acad. Sci. 2001, 930, 28–42, doi:10.1111/j.1749-6632.2001.tb05723.x.
[62]  Hannon, E.E.; Trainor, L.J. Music acquisition: Effects of enculturation and formal training on development. Trends Cogn. Sci. 2007, 11, 466–472, doi:10.1016/j.tics.2007.08.008.
[63]  Morrison, S.J.; Demorest, S.M. Cultural constraints on music perception and cognition. Prog. Brain Res. 2009, 178, 67–77, doi:10.1016/S0079-6123(09)17805-6.
[64]  Janata, P.; Grafton, S.T. Swinging in the brain: Shared neural substrates for behaviors related to sequencing and music. Nat. Neurosci. 2003, 6, 682–687, doi:10.1038/nn1081.
[65]  Phillips-Silver, J. On the meaning of movement in music, development and the brain. Contemp. Music Rev. 2009, 28, 293–314, doi:10.1080/07494460903404394.
[66]  Rohrmeier, M.A.; Koelsch, S. Predictive information processing in music cognition. A critical review. Int. J. Psychophysiol. 2012, 83, 164–175, doi:10.1016/j.ijpsycho.2011.12.010.
[67]  Alluri, V.; Toiviainen, P.; J??skel?inen, I.P.; Glerean, E.; Sams, M.; Brattico, E. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage 2012, 59, 3677–3689, doi:10.1016/j.neuroimage.2011.11.019.
[68]  Milton, J.; Solodkin, A.; Hlu?tik, P.; Small, S.L. The mind of expert motor performance is cool and focused. NeuroImage 2007, 35, 804–813, doi:10.1016/j.neuroimage.2007.01.003.
[69]  Dar-Nimrod, I.; Hansen, I.G.; Proulx, T.; Lehman, D.R.; Chapman, B.P.; Duberstein, P.R. Coolness: An empirical investigation. J. Individ. Differ. 2012, 33, 175–185, doi:10.1027/1614-0001/a000088.
[70]  Wan, C.Y.; Schlaug, G. Music making as a tool for promoting brain plasticity across the life span. Neuroscientist 2010, 16, 566–577, doi:10.1177/1073858410377805.
[71]  Olds, J.; Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 1954, 47, 419–427, doi:10.1037/h0058775.
[72]  Routtenberg, A. The reward system of the brain. Sci. Am. 1978, 239, 154–165, doi:10.1038/scientificamerican1178-154.
[73]  Baldo, B.A.; Kelley, A.E. Discrete neurochemical coding of distinguishable motivational processes: Insights from nucleus accumbens control of feeding. Psychopharmacology 2007, 191, 439–459, doi:10.1007/s00213-007-0741-z.
[74]  Berridge, K.C.; Kringelbach, M.L. Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology 2008, 199, 457–480, doi:10.1007/s00213-008-1099-6.
[75]  Ikemoto, S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci. Biobehav. Rev. 2010, 35, 129–150, doi:10.1016/j.neubiorev.2010.02.001.
[76]  Phaus, J.G. Pathways of sexual desire. J. Sex. Med. 2009, 6, 1506–1533, doi:10.1111/j.1743-6109.2009.01309.x.
[77]  Joseph, R. The limbic system: Emotion, laterality, and unconscious mind. Psychoanal. Rev. 1992, 79, 405–456.
[78]  Mogenson, G.J.; Jones, D.L.; Yim, C.Y. From motivation to action: Functional interface between the limbic system and the motor system. Prog. Neurobiol. 1980, 14, 69–97, doi:10.1016/0301-0082(80)90018-0.
[79]  Collier, T.C.; Taylor, C. Self-organization in sensor networks. J. Parallel Distrib. Comput. 2004, 64, 366–373.
[80]  Uhlhaas, P.J.; Haenschel, C.; Nikoli?, D.; Singer, W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 2008, 34, 927–943, doi:10.1093/schbul/sbn062.
[81]  Engel, A.K.; Fries, P.; K?nig, P.; Brecht, M.; Singer, W. Temporal binding, binocular rivalry, and consciousness. Conscious. Cogn. 1999, 8, 128–151, doi:10.1006/ccog.1999.0389.
[82]  Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J. The brainweb: Phase synchronization and large-scale integration. Neuroscience 2001, 2, 229–239.
[83]  Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929, doi:10.1126/science.1099745.
[84]  De Araujo, I.E.T.; Rolls, E.T.; Kringelbach, M.L.; McGlone, F.; Phillips, N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 2003, 18, 2059–2068, doi:10.1046/j.1460-9568.2003.02915.x.
[85]  Smith, K.S.; Berridge, K.C. Opioid limbic circuit for reward Interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 2007, 27, 1594–1605, doi:10.1523/JNEUROSCI.4205-06.2007.
[86]  Smith, K.S.; Mahler, S.V.; Pecina, S.; Berridge, K.C. Hedonic Hotspots: Generating Sensory Pleasure in the Brain. In Pleasures of the Brain; Kringelbach, M.L., Berridge, K.C., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 27–49.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133