全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Evolution and Optimality of Mood States

DOI: 10.3390/bs3030501

Keywords: emotion, circumplex, mood, drift diffusion model, optimal decision making, core affect

Full-Text   Cite this paper   Add to My Lib

Abstract:

Moods can be regarded as fluctuating dispositions to make positive and negative evaluations. Developing an evolutionary approach to mood as an adaptive process, we consider the structure and function of such states in guiding behavioural decisions regarding the acquisition of resources and the avoidance of harm in different circumstances. We use a drift diffusion model of decision making to consider the information required by individuals to optimise decisions between two alternatives, such as whether to approach or withdraw from a stimulus that may be life enhancing or life threatening. We show that two dimensions of variation (expectation and preparedness) are sufficient for such optimal decisions to be made. These two dispositional dimensions enable individuals to maximize the overall benefits of behavioural decisions by modulating both the choice made (e.g., approach/withdraw) and decision speed. Such a structure is compatible with circumplex models of subjectively experienced mood and core affect, and provides testable hypotheses concerning the relationships that occur between valence and arousal components of mood in differing ecological niches. The paper is therefore a useful step toward being able to predict moods (and the effect of moods) using an optimality approach.

References

[1]  Schwarz, N.; Clore, G.L. Mood, Misattribution, and judgments of well-being—informative and directive functions of affective states. J. Pers. Soc. Psychol. 1983, 45, 513–523, doi:10.1037/0022-3514.45.3.513.
[2]  Gasper, K.; Clore, G.L. The persistent use of negative affect by anxious individuals to estimate risk. J. Pers. Soc. Psychol. 1998, 74, 1350–1363, doi:10.1037/0022-3514.74.5.1350.
[3]  Forgas, J.P. Mood and judgment—the affect infusion model (AIM). Psychol. Bull. 1995, 117, 39–66, doi:10.1037/0033-2909.117.1.39.
[4]  Slovic, P.; Finucane, M.L.; Peters, E.; MacGregor, D.G. The affect heuristic. Eur. J. Res. 2007, 177, 1333–1352, doi:10.1016/j.ejor.2005.04.006.
[5]  Paul, E.S.; Harding, E.J.; Mendl, M. Measuring emotional processes in animals: The utility of a cognitive approach. Neurosci. Biobehav. R. 2005, 29, 469–491, doi:10.1016/j.neubiorev.2005.01.002.
[6]  Mendl, M.; Burman, O.H.P.; Paul, E.S. An integrative and functional framework for the study of animal emotion and mood. Proc. Biol. Sci. 2010, 277, 2895–2904, doi:10.1098/rspb.2010.0303.
[7]  Bradley, M.M.; Lang, P.J. Measuring emotion—the self-assessment mannequin and the semantic differential. J. Behav.Ther. Exp. Psychiatr. 1994, 25, 49–59, doi:10.1016/0005-7916(94)90063-9.
[8]  Carver, C.S. Affect and the functional bases of behavior: On the dimensional structure of affective experience. Pers. Soc. Psychol. Rev. 2001, 5, 345–356.
[9]  Colibazzi, T.; Posner, J.; Wang, Z.S.; Gorman, D.; Gerber, A.; Yu, S.; Zhu, H.T.; Kangarlu, A.; Duan, Y.S.; Russell, J.A.; et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion 2010, 10, 377–389, doi:10.1037/a0018484.
[10]  Larsen, R.J.D.; Diener, E. Promises and problems with the circumplex model of emotion. In Review of Personality and Social Psychology: Emotion; Clark, M.S., Ed.; Sage: Newbury Park, CA, USA, 1992; pp. 25–59.
[11]  Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734.
[12]  Russell, J.A. A circumplex model of affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178, doi:10.1037/h0077714.
[13]  Russell, J.A. Core affect and the psychological construction of emotion. Psychol. Rev. 2003, 110, 145–172, doi:10.1037/0033-295X.110.1.145.
[14]  Russell, J.A.; Barrett, L.F. Core affect, prototypical emotional episodes, and other things called Emotion: Dissecting the elephant. J. Pers. Soc. Psychol. 1999, 76, 805–819, doi:10.1037/0022-3514.76.5.805.
[15]  Thayer, R.E. The Biopsychology of Mood and Activation; Oxford University Press: New York, NY, USA, 1989.
[16]  Watson, D.; Wiese, D.; Vaidya, J.; Tellegen, A. The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J. Pers. Soc. Psychol. 1999, 76, 820–838, doi:10.1037/0022-3514.76.5.820.
[17]  Watson, D.; Tellegen, A. Toward a consensual structure of mood. Psychol. Bull. 1985, 98, 219–235, doi:10.1037/0033-2909.98.2.219.
[18]  Yik, M.S.M.; Russell, J.A.; Barrett, L.F. Structure of self-reported current affect: Integration and beyond. J. Pers. Soc. Psychol. 1999, 77, 600–619, doi:10.1037/0022-3514.77.3.600.
[19]  Yik, M.; Russell, J.A.; Steiger, J.H. A 12-point circumplex structure of core affect. Emotion 2011, 11, 705–731, doi:10.1037/a0023980.
[20]  Frijda, N.H. The Emotions. Studies in Emotion and Social Interaction; Cambridge University Press: Cambridge, UK, 1986.
[21]  Ekman, P. An Argument for Basic Emotions. Cognit. Emot. 1992, 6, 169–200, doi:10.1080/02699939208411068.
[22]  Bateson, M.; Brilot, B.; Nettle, D. Anxiety: An evolutionary approach. Can. J. Psychiat. 2011, 56, 707–715.
[23]  Nettle, D.; Bateson, M. The evolutionary origins of mood and its disorders. Curr. Biol. 2012, 22, R712–R721, doi:10.1016/j.cub.2012.06.020.
[24]  Paul, E.S.; Cuthill, I.; Kuroso, G.; Norton, V.; Woodgate, J.; Mendl, M. Mood and the speed of decisions about anticipated resources and hazards. Evol. Hum. Behav. 2011, 32, 21–28, doi:10.1016/j.evolhumbehav.2010.07.005.
[25]  Blanchette, I.; Richards, A. The influence of affect on higher level cognition: A review of research on interpretation, judgement, decision making and reasoning. Cognit. Emot. 2010, 24, 561–595, doi:10.1080/02699930903132496.
[26]  Nesse, R.M. The smoke detector principle—Natural selection and the regulation of defensive responses. Ann. NY Acad. Sci. 2001, 935, 75–85, doi:10.1111/j.1749-6632.2001.tb03472.x.
[27]  Nesse, R.M. Natural selection and the regulation of defenses—A signal detection analysis of the smoke detector principle. Evol. Hum. Behav. 2005, 26, 88–105, doi:10.1016/j.evolhumbehav.2004.08.002.
[28]  Mendl, M.; Paul, E.S.; Chittka, L. Animal behaviour: Emotion in invertebrates? Curr. Biol. 2011, 21, R463–R465, doi:10.1016/j.cub.2011.05.028.
[29]  Rolls, E.T. Emotion Explained (Series in Affective Science); Oxford University Press: New York, NY, USA, 2005.
[30]  Panksepp, J. The basic emotional circuits of mammalian brains: Do animals have affective lives? Neurosci. Biobehav. Rev. 2011, 35, 1791–1804, doi:10.1016/j.neubiorev.2011.08.003.
[31]  Carver, C.S.; Scheier, M.F. Origins and functions of positive and negative affect—a control-process view. Psychol. Rev. 1990, 97, 19–35, doi:10.1037/0033-295X.97.1.19.
[32]  Gray, J.A. Three fundamental emotion systems. In The Nature of Emotion; Davidson, P.E.R.J., Ed.; Oxford University Press: New York, NY, USA, 1994.
[33]  Boureau, Y.L.; Dayan, P. Opponency revisited: Competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 2011, 36, 74–97, doi:10.1038/npp.2010.151.
[34]  Burgdorf, J.; Panksepp, J. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 2006, 30, 173–187, doi:10.1016/j.neubiorev.2005.06.001.
[35]  Becker, E.S.; Rinck, M. Sensitivity and response bias in fear of spiders. Cognit. Emot. 2004, 18, 961–976, doi:10.1080/02699930341000329.
[36]  Wiens, S.; Peira, N.; Golkar, A.; Ohman, A. Recognizing masked threat: Fear betrays, but disgust you can trust. Emotion 2008, 8, 810–819, doi:10.1037/a0013731.
[37]  Geary, D.C. The evolution of general fluid intelligence. In Foundations in Evolutionary Cognitive Neuroscience; Platek, S.M., Shackelford, T.K., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 22–56.
[38]  Houston, A.I.; McNamara, J.M. Models of Adaptive Behaviour; Cambridge University Press: Cambridge, UK, 1999.
[39]  Chittka, L.; Skorupski, P.; Raine, N.E. Speed-accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 2009, 24, 400–407, doi:10.1016/j.tree.2009.02.010.
[40]  Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Stat. 1945, 16, 117–186, doi:10.1214/aoms/1177731118.
[41]  Bogacz, R.; Brown, E.; Moehlis, J.; Holmes, P.; Cohen, J.D. The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 2006, 113, 700–765, doi:10.1037/0033-295X.113.4.700.
[42]  Cisek, P.; Kalaska, J.F. Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron 2005, 45, 801–814, doi:10.1016/j.neuron.2005.01.027.
[43]  Schall, J.D. Neural basis of deciding, choosing and acting. Nat. Rev. Neurosci. 2001, 2, 33–42, doi:10.1038/35049054.
[44]  Shadlen, M.N.; Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 2001, 86, 1916–1936.
[45]  Yang, T.; Shadlen, M.N. Probabilistic reasoning by neurons. Nature 2007, 447, 1075–1080, doi:10.1038/nature05852.
[46]  Roitman, J.D.; Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 2002, 22, 9475–9489.
[47]  Laming, D.R.J. Information Theory of Choice-Reaction Times; Academic: London, UK, 1968; pp. ix, 172.
[48]  Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 1978, 83, 59–108, doi:10.1037/0033-295X.85.2.59.
[49]  Ratcliff, R.; Smith, P.L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 2004, 111, 333–367, doi:10.1037/0033-295X.111.2.333.
[50]  Smith, P.L.; Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 2004, 27, 161–168.
[51]  Bogacz, R. Optimal decision-making theories: Linking neurobiology with behaviour. Trends Cognit. Sci. 2007, 11, 118–125, doi:10.1016/j.tics.2006.12.006.
[52]  Milosavljevic, M.; Malmaud, J.; Huth, A.; Koch, C.; Rangel, A. The Drift Diffusion Model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgm. Decis. Mak. 2010, 5, 437–449.
[53]  Wong, K.F.; Wang, X.J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 2006, 26, 1314–1328, doi:10.1523/JNEUROSCI.3733-05.2006.
[54]  Usher, M.; McClelland, J.L. The time course of perceptual choice: The leaky, competing accumulator model. Psychol. Rev. 2001, 108, 550–592, doi:10.1037/0033-295X.108.3.550.
[55]  Wald, A.; Wolfowitz, J. Optimum character of the sequential probability ratio test. Ann. Math. Stati. 1948, 19, 326–339, doi:10.1214/aoms/1177730197.
[56]  Fisher, R.A. The Genetical theory of Natural Selection; The Clarendon Press: Oxford, UK, 1930.
[57]  Trimmer, P.C.; Houston, A.I.; Marshall, J.A.R.; Bogacz, R.; Paul, E.S.; Mendl, M.T.; McNamara, J.M. Mammalian choices: Combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proc. Biol. Sci. 2008, 275, 2353–2361, doi:10.1098/rspb.2008.0417.
[58]  De Waal, F.B.M. What is an animal emotion? Ann. NY. Acad. Sci. 2011, 1224, 191–206, doi:10.1111/j.1749-6632.2010.05912.x.
[59]  Houston, A.I.; Mcnamara, J.M.; Hutchinson, J.M.C. General results concerning the trade-off between gaining energy and avoiding predation. Philos. T. Roy. Soc. B 1993, 341, 375–397, doi:10.1098/rstb.1993.0123.
[60]  Lima, S.L.; Dill, L.M. Behavioral decisions made under the risk of predation—a review and prospectus. Can. J. Zoolog. 1990, 68, 619–640, doi:10.1139/z90-092.
[61]  Dayan, P. Instrumental vigour in punishment and reward. Eur. J. Neurosci. 2012, 35, 1152–1168, doi:10.1111/j.1460-9568.2012.08026.x.
[62]  Niv, Y.; Daw, N.D.; Joel, D.; Dayan, P. Tonic dopamine: Opportunity costs and the control of response vigor. Psychopharmacology 2007, 191, 507–520, doi:10.1007/s00213-006-0502-4.
[63]  Buzsa?ki, G. Rhythms of The Brain; Oxford University Press: Oxford, UK, New York, NY, USA, 2006.
[64]  Niv, Y.; Joel, D.; Dayan, P. A normative perspective on motivation. Trends Cognit. Sci. 2006, 10, 375–381, doi:10.1016/j.tics.2006.06.010.
[65]  Dayan, P.; Daw, N.D. Decision theory, reinforcement learning, and the brain. Cogn. Affect. Behav. Ne. 2008, 8, 429–453, doi:10.3758/CABN.8.4.429.
[66]  Phan, K.L.; Wager, T.; Taylor, S.F.; Liberzon, I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002, 16, 331–348, doi:10.1006/nimg.2002.1087.
[67]  Borodin, A.N.; Salminen, P. Handbook of Brownian Motion—Facts and Formulae (Probability and Its Applications); Springer Basel AG: Boston, MA, USA, 1996.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133