全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hippocampal Physiology, Structure and Function and the Neuroscience of Schizophrenia: A Unified Account of Declarative Memory Deficits, Working Memory Deficits and Schizophrenic Symptoms

DOI: 10.3390/bs3020298

Keywords: hippocampus, memory, schizophrenia, parietal, superior temporal sulcus, social cognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Memory impairment is a consistent feature of the schizophrenic syndrome. Hippocampal dysfunction has also been consistently demonstrated. This review will discuss neurophysiological and neuroanatomical aspects of memory formation and how they relate to memory impairment in schizophrenia. An understanding of the cellular physiology and connectivity of the hippocampus with other regions can also aid in understanding the relationship between schizophrenic declarative or relational memory deficits, working memory deficits and the clinical symptoms of the syndrome.

References

[1]  Cirillo, M.A.; Seidman, L.J. Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychol. Rev. 2003, 13, 43–77.
[2]  Goldman-Rakic, P.S. Working memory dysfunction in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 1994, 6, 348–357.
[3]  Warren, D.E.; Duff, M.C.; Jensen, U.; Tranel, D.; Cohen, N.J. Hiding in plain view: Lesions of the medial temporal lobe impair online representation. Hippocampus 2012, 22, 1577–1588.
[4]  Watanabe, T.; Niki, H. Hippocampal unit activity and delayed response in the monkey. Brain Res. 1985, 325, 241–254.
[5]  Hannula, D.E.; Tranel, D.; Cohen, N.J. The long and the short of it: Relational memory impairments in amnesia, Even at short lags. J. Neurosci. 2006, 26, 8352–8359.
[6]  Wible, C.G.; Shenton, M.E.; McCarley, R.W. Functional neuroanatomy of the limbic system and planum temporale. In Brain Imaging in Clinical Psychiatry; Krishnan, R.R., Doraiswamy, P.M., Eds.; Marcel Dekker: New York, NY, USA, 1997; pp. 63–101.
[7]  Small, S.A.; Schobel, S.A.; Buxton, R.B.; Witter, M.P.; Barnes, C.A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 2011, 12, 585–601.
[8]  Wible, C.G. Hippocampal temporal-parietal junction interaction in the production of psychotic pymptoms: A framework for understanding the schizophrenic syndrome. Front. Neurosci. 2012, 6, 1–30.
[9]  Saykin, A.J.; Gur, R.C.; Gur, R.E.; Mozley, P.D.; Mozley, L.H.; Resnick, S.M.; Kester, D.B.; Stafiniak, P. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch. Gen. Psychiatr. 1991, 48, 618–624.
[10]  Aleman, A.; Hijman, R.; de Haan, E.H.; Kahn, R.S. Memory impairment in schizophrenia: A meta-analysis. Am. J. Psychiatr. 1999, 156, 1358–1366.
[11]  Eichenbaum, H.C.N.; Otto, T.; Wible, C.G. Memory representation in the hippocampus: Functional domain and functional organization. In Memory: Organization and Locus of Change; Squire, L.R., Weinberger, N.M., McGaugh, J.L., Eds.; Oxford University Press: New York, NY, USA, 1991.
[12]  Seidman, L.J.; Pantelis, C.; Keshavan, M.S.; Faraone, S.V.; Goldstein, J.M.; Horton, N.J.; Makris, N.; Falkai, P.; Caviness, V.S.; Tsuang, M.T. A review and new report of medial temporal lobe dysfunction as a vulnerability indicator for schizophrenia: A magnetic resonance imaging morphometric family study of the parahippocampal gyrus. Schizophr. Bull. 2003, 29, 803–830.
[13]  Heckers, S. Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 2001, 11, 520–528.
[14]  Velakoulis, D.; Wood, S.J.; Wong, M.T.; McGorry, P.D.; Yung, A.; Phillips, L.; Smith, D.; Brewer, W.; Proffitt, T.; Desmond, P.; et al. Hippocampal and amygdala volumes according to psychosis stage and diagnosis: A magnetic resonance imaging study of chronic schizophrenia, First-episode psychosis, And ultra-high-risk individuals. Arch. Gen. Psychiatr. 2006, 63, 139–149.
[15]  Heckers, S.; Konradi, C. Hippocampal neurons in schizophrenia. J. Neural. Transm. 2002, 109, 891–905.
[16]  Heckers, S.; Rauch, S.L.; Goff, D.; Savage, C.R.; Schacter, D.L.; Fischman, A.J.; Alpert, N.M. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat. Neurosci. 1998, 1, 318–323.
[17]  Cohen, N.J.; Ryan, J.; Hunt, C.; Romine, L.; Wszalek, T.; Nash, C. Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus 1999, 9, 83–98.
[18]  Amaral, D.G. Emerging principles of intrinsic hippocampal organization. Curr. Opin. Neurobiol. 1993, 3, 225–229.
[19]  Insausti, R.; Amaral, D.G.; Cowan, W.M. The entorhinal cortex of the monkey: II. Cortical afferents. J. Comp. Neurol. 1987, 264, 356–395, doi:10.1002/cne.902640306.
[20]  Suzuki, W.A.; Amaral, D.G. Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J. Comp. 1994, 350, 497–533.
[21]  Witter, M.P.; Amaral, D.G. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J. Comp. Neurol. 1991, 307, 437–459, doi:10.1002/cne.903070308.
[22]  Benes, F.M. Myelination of cortical-hippocampal relays during late adolescence. Schizophr. Bull. 1989, 15, 585–593.
[23]  Suzuki, M.; Hagino, H.; Nohara, S.; Zhou, S.Y.; Kawasaki, Y.; Takahashi, T.; Matsui, M.; Seto, H.; Ono, T.; Kurachi, M. Male-specific volume expansion of the human hippocampus during adolescence. Cereb. Cortex. 2005, 15, 187–193.
[24]  Lavenex, P.; Amaral, D.G. Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus 2000, 10, 420–430.
[25]  Lavenex, P.; Suzuki, W.A.; Amaral, D.G. Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex. J. Neurol. 2002, 447, 394–420.
[26]  Suzuki, W.A.; Amaral, D.G. Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J. Comp. Neurol. 1994, 350, 497–533.
[27]  Sloviter, R.S.; Lomo, T. Updating the lamellar hypothesis of hippocampal organization. Front. Neural Circuit. 2012, 6, 102.
[28]  Insausti, R.; Tunon, T.; Sobreviela, T.; Insausti, A.M.; Gonzalo, L.M. The human entorhinal cortex: A cytoarchitectonic analysis. J. Comp. Neurol. 1995, 355, 171–198.
[29]  Kartsounis, L.D.; Rudge, P.; Stevens, J.M. Bilateral lesions of CA1 and CA2 fields of the hippocampus are sufficient to cause a severe amnesic syndrome in humans. J. Neurol. Neurosurg. Psychiatr. 1995, 59, 95–98.
[30]  Rempel-Clower, N.L.; Zola, S.M.; Squire, L.R.; Amaral, D.G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 1996, 16, 5233–5255.
[31]  Zola-Morgan, S.; Squire, L.R.; Amaral, D.G. Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 1986, 6, 2950–2967.
[32]  Zola-Morgan, S.; Squire, L.R.; Rempel, N.L.; Clower, R.P.; Amaral, D.G. Enduring memory impairment in monkeys after ischemic damage to the hippocampus. J. Neurosci. 1992, 12, 2582–2596.
[33]  Reed, J.M.; Squire, L.R. Retrograde amnesia for facts and events: findings from four new cases. J. Neurosci. 1998, 18, 3943–3954.
[34]  Epp, J.R.; Chow, C.; Galea, L.A. Hippocampus-dependent learning influences hippocampal neurogenesis. Front. Neurosci. 2013, 7, 57.
[35]  Cotman, C.W.; Monaghan, D.T. Anatomical organization of excitatory amino acid receptors and their properties. Adv. Exp. Med. 1986, 203, 237–252.
[36]  Bliss, T.V.; Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973, 232, 331–356.
[37]  Schobel, S.A.; Lewandowski, N.M.; Corcoran, C.M.; Moore, H.; Brown, T.; Malaspina, D.; Small, S.A. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch. Gen. Psychiatr. 2009, 66, 938–946.
[38]  Eichenbaum, H. Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron 2004, 44, 109–120.
[39]  Fried, I.; Cameron, K.A.; Yashar, S.; Fong, R.; Morrow, J.W. Inhibitory and excitatory responses of single neurons in the human medial temporal lobe during recognition of faces and objects. Cereb. Cortex. 2002, 12, 575–584.
[40]  Halgren, E.; Babb, T.L.; Crandall, P.H. Activity of human hippocampal formation and amygdala neurons during memory testing. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 585–601.
[41]  Quiroga, R.Q.; Kreiman, G.; Koch, C.; Fried, I. Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends Cogn. Sci. 2008, 12, 87–91.
[42]  Quiroga, R.Q.; Reddy, L.; Kreiman, G.; Koch, C.; Fried, I. Invariant visual representation by single neurons in the human brain. Nature 2005, 435, 1102–1107.
[43]  O'Keefe, J. A review of the hippocampal place cells. Prog. Neurobiol. 1979, 13, 419–439.
[44]  Wible, C.G.; Findling, R.L.; Shapiro, M.; Lang, E.J.; Crane, S.; Olton, D.S. Mnemonic correlates of unit activity in the hippocampus. Brain Res. 1986, 399, 97–110.
[45]  Riches, I.P.; Wilson, F.A.; Brown, M.W. The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J. Neurosci. 1991, 11, 1763–1779.
[46]  Weiss, C.; Bouwmeester, H.; Power, J.M.; Disterhoft, J.F. Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behav. Brain Res. 1999, 99, 123–132.
[47]  Thompson, L.T.; Best, P.J. Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 1990, 509, 299–308.
[48]  Muller, R.U.; Kubie, J.L.; Ranck, J.B., Jr. Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 1987, 7, 1935–1950.
[49]  Cohen, N.J.; Poldrack, R.A.; Eichenbaum, H. Memory for items and memory for relations in the procedural/declarative memory framework. Memory 1997, 5, 131–178.
[50]  Williams, L.E.; Must, A.; Avery, S.; Woolard, A.; Woodward, N.D.; Cohen, N.J.; Heckers, S. Eye-movement behavior reveals relational memory impairment in schizophrenia. Biol. Psychiatr. 2010, 68, 617–624.
[51]  Buonomano, D.V.; Merzenich, M.M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 1998, 21, 149–186.
[52]  Javitt, D.C. When doors of perception close: Bottom-up models of disrupted cognition in schizophrenia. Annu. Rev. Clin. Psychol. 2009, 5, 249–275.
[53]  Wiebe, S. Epidemiology of temporal lobe epilepsy. In Can. J. Neurol. Sci.; 2000; 27 (Suppl. 1), pp. S6–S10; discussion S20–S21.
[54]  Griesemer, D.; Mautes, A.M. Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J. Neurotrauma. 2007, 24, 1823–1832.
[55]  Villanueva, V.; Serratosa, J.M. Temporal lobe epilepsy: Clinical semiology and age at onset. Epileptic Disord. 2005, 7, 83–90.
[56]  Sapolsky, R.M.; Uno, H.; Rebert, C.S.; Finch, C.E. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J. Neurosci. 1990, 10, 2897–2902.
[57]  Sandi, C. Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends Neurosci. 2011, 34, 165–176, doi:10.1016/j.tins.2011.01.006.
[58]  Clarke, M.C.; Tanskanen, A.; Huttunen, M.O.; Clancy, M.; Cotter, D.R.; Cannon, M. Evidence for shared susceptibility to epilepsy and psychosis: A population-based family study. Biol. Psychiatr. 2012, 71, 836–839, doi:10.1016/j.biopsych.2012.01.011.
[59]  Briellmann, R.S.; Kalnins, R.M.; Hopwood, M.J.; Ward, C.; Berkovic, S.F.; Jackson, G.D. TLE patients with postictal psychosis: mesial dysplasia and anterior hippocampal preservation. Neurology 2000, 55, 1027–1030.
[60]  Nishida, T.; Kudo, T.; Inoue, Y.; Nakamura, F.; Yoshimura, M.; Matsuda, K.; Yagi, K.; Fujiwara, T. Postictal mania versus postictal psychosis: Differences in clinical features, Epileptogenic zone, And brain functional changes during postictal period. Epilepsia 2006, 47, 2104–2114, doi:10.1111/j.1528-1167.2006.00893.x.
[61]  Tarulli, A.; Devinsky, O.; Alper, K. Progression of postictal to interictal psychosis. Epilepsia 2001, 42, 1468–1471.
[62]  Elliott, B.; Joyce, E.; Shorvon, S. Delusions, Illusions and hallucinations in epilepsy: 2. Complex phenomena and psychosis. Epilepsy Res. 2009, 85, 172–186, doi:10.1016/j.eplepsyres.2009.03.017.
[63]  Verhoeven, W.M.; Egger, J.I.; Gunning, W.B.; Bevers, M.; de Pont, B.J. Recurrent schizophrenia-like psychosis as first manifestation of epilepsy: A diagnostic challenge in neuropsychiatry. Neuropsychiatr. Dis. Treat. 2010, 6, 227–231.
[64]  Woo, T.U.; Spencer, K.; McCarley, R.W. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatr. 2010, 18, 173–189, doi:10.3109/10673221003747609.
[65]  Li, K.X.; Lu, Y.M.; Xu, Z.H.; Zhang, J.; Zhu, J.M.; Zhang, J.M.; Cao, S.X.; Chen, X.J.; Chen, Z.; Luo, J.H.; et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat. Neurosci. 2011, 15, 267–273, doi:10.1038/nn.3006.
[66]  Allen, P.; Laroi, F.; McGuire, P.K.; Aleman, A. The hallucinating brain: A review of structural and functional neuroimaging studies of hallucinations. Neurosci. Biobehav. Rev. 2008, 32, 175–191, doi:10.1016/j.neubiorev.2007.07.012.
[67]  Woodward, N.D.; Rogers, B.; Heckers, S. Functional resting-state networks are differentially affected in schizophrenia. Schizophr. Res. 2011, 130, 86–93, doi:10.1016/j.schres.2011.03.010.
[68]  Diederen, K.M.; Neggers, S.F.; Daalman, K.; Blom, J.D.; Goekoop, R.; Kahn, R.S.; Sommer, I.E. Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. Am. J. Psychiatr. 2010, 167, 427–435, doi:10.1176/appi.ajp.2009.09040456.
[69]  Jardri, R.; Pouchet, A.; Pins, D.; Thomas, P. Cortical activations during auditory verbal hallucinations in schizophrenia: A coordinate-based meta-analysis. Am. J. Psychiatr. 2011, 168, 73–81, doi:10.1176/appi.ajp.2010.09101522.
[70]  Arzy, S.; Mohr, C.; Michel, C.M.; Blanke, O. Duration and not strength of activation in temporo-parietal cortex positively correlates with schizotypy. Neuroimage 2007, 35, 326–333, doi:10.1016/j.neuroimage.2006.11.027.
[71]  Ffytche, D.H.; Howard, R.J.; Brammer, M.J.; David, A.; Woodruff, P.; Williams, S. The anatomy of conscious vision: An fMRI study of visual hallucinations. Nat. Neurosci. 1998, 1, 738–742, doi:10.1038/3738.
[72]  Santhouse, A.M.; Howard, R.J.; ffytche, D.H. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain 2000, 123, 2055–2064, doi:10.1093/brain/123.10.2055.
[73]  Kahn, I.; Andrews-Hanna, J.R.; Vincent, J.L.; Snyder, A.Z.; Buckner, R.L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 2008, 100, 129–139, doi:10.1152/jn.00077.2008.
[74]  Vincent, J.L.; Snyder, A.Z.; Fox, M.D.; Shannon, B.J.; Andrews, J.R.; Raichle, M.E.; Buckner, R.L. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 2006, 96, 3517–3531, doi:10.1152/jn.00048.2006.
[75]  Buckner, R.L.; Sepulcre, J.; Talukdar, T.; Krienen, F.M.; Liu, H.; Hedden, T.; Andrews-Hanna, J.R.; Sperling, R.A.; Johnson, K.A. Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 2009, 29, 1860–1873, doi:10.1523/JNEUROSCI.5062-08.2009.
[76]  Hutchinson, J.B.; Uncapher, M.R.; Wagner, A.D. Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learn. Mem. 2009, 16, 343–356, doi:10.1101/lm.919109.
[77]  Clower, D.M.; West, R.A.; Lynch, J.C.; Strick, P.L. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J. Neurosci. 2001, 21, 6283–6291.
[78]  Rockland, K.S.; Van Hoesen, G.W. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb. Cortex. 1999, 9, 232–237, doi:10.1093/cercor/9.3.232.
[79]  Ghent, L.; Mishkin, M.; Teuber, H.L. Short-term memory after frontal-lobe injury in man. J. Comp. Physiol. Psychol. 1962, 55, 705–709, doi:10.1037/h0047520.
[80]  Paulesu, E.; Frith, C.D.; Frackowiak, R.S. The neural correlates of the verbal component of working memory. Nature 1993, 362, 342–345, doi:10.1038/362342a0.
[81]  Jonides, J.; Schumacher, E.H.; Smith, E.E.; Koeppe, R.A.; Awh, E.; Reuter-Lorenz, P.A.; Marshuetz, C.; Willis, C.R. The role of parietal cortex in verbal working memory. J. Neurosci. 1998, 18, 5026–5034.
[82]  Lee, J.; Park, S. Working memory impairments in schizophrenia: A meta-analysis. J. Abnorm. Psychol. 2005, 114, 599–611, doi:10.1037/0021-843X.114.4.599.
[83]  Manoach, D.S. Prefrontal cortex dysfunction during working memory performance in schizophrenia: Reconciling discrepant findings. Schizophr. Res. 2003, 60, 285–298, doi:10.1016/S0920-9964(02)00294-3.
[84]  Frisk, V.; Milner, B. The role of the left hippocampal region in the acquisition and retention of story content. Neuropsychologia 1990, 28, 349–359, doi:10.1016/0028-3932(90)90061-R.
[85]  Petrides, M.; Alivisatos, B.; Evans, A.C.; Meyer, E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc. Natl. Acad. Sci. USA 1993, 90, 873–877, doi:10.1073/pnas.90.3.873.
[86]  Postle, B.R. Working memory as an emergent property of the mind and brain. Neuroscience 2006, 139, 23–38, doi:10.1016/j.neuroscience.2005.06.005.
[87]  Postle, B.R.; Ferrarelli, F.; Hamidi, M.; Feredoes, E.; Massimini, M.; Peterson, M.; Alexander, A.; Tononi, G. Repetitive transcranial magnetic stimulation dissociates working memory manipulation from retention functions in the prefrontal, but not posterior parietal, cortex. J. Cogn. Neurosci. 2006, 18, 1712–1722, doi:10.1162/jocn.2006.18.10.1712.
[88]  Hamidi, M.; Tononi, G.; Postle, B.R. Evaluating frontal and parietal contributions to spatial working memory with repetitive transcranial magnetic stimulation. Brain Res. 2008, 1230, 202–210, doi:10.1016/j.brainres.2008.07.008.
[89]  Buchsbaum, B.R.; D'Esposito, M. The search for the phonological store: From loop to convolution. J. Cogn. Neurosci. 2008, 20, 762–778, doi:10.1162/jocn.2008.20501.
[90]  Owen, A.M.; Morris, R.G.; Sahakian, B.J.; Polkey, C.E.; Robbins, T.W. Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Brain 1996, 119, 1597–1615, doi:10.1093/brain/119.5.1597.
[91]  D'Esposito, M.; Postle, B.R. The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia 1999, 37, 1303–1315, doi:10.1016/S0028-3932(99)00021-4.
[92]  Manoach, D.S.; Greve, D.N.; Lindgren, K.A.; Dale, A.M. Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 2003, 20, 1670–1684, doi:10.1016/j.neuroimage.2003.08.002.
[93]  Curtis, C.E.; D'Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 2003, 7, 415–423, doi:10.1016/S1364-6613(03)00197-9.
[94]  Wible, C.G.; Preus, A.P.; Hashimoto, R. A cognitive neuroscience view of schizophrenic symptoms: Abnormal activation of a system for social perception and communication. Brain Imaging Behav. 2009, 3, 85–110, doi:10.1007/s11682-008-9052-1.
[95]  Wible, C.G. Schizophrenia as a Disorder of Social Communication. Schizophr. Res. Treat. 2012, 2012. Article ID 920485.
[96]  Wible, C.G. The Brain Bases of Phantom Auditory Phenomena: From Tinnitus to Hearing Voices. Semin. Hear. 2012, 33, 295–304, doi:10.1055/s-0032-1315728.
[97]  Levine, D.N.; Finklestein, S. Delayed psychosis after right temporoparietal stroke or trauma: Relation to epilepsy. Neurology 1982, 32, 267–273, doi:10.1212/WNL.32.3.267.
[98]  Suzuki, K.; Takei, N.; Toyoda, T.; Iwata, Y.; Hoshino, R.; Minabe, Y.; Mori, N. Auditory hallucinations and cognitive impairment in a patient with a lesion restricted to the hippocampus. Schizophr. Res. 2003, 64, 87–89, doi:10.1016/S0920-9964(02)00386-9.
[99]  Stefanacci, L.; Buffalo, E.A.; Schmolck, H.; Squire, L.R. Profound amnesia after damage to the medial temporal lobe: A neuroanatomical and neuropsychological profile of patient E.P. J. Neurosci. 2000, 20, 7024–7036.
[100]  Anderson, S.W.; Damasio, H.; Jones, R.D.; Tranel, D. Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. J. Clin. Exp. Neuropsychol. 1991, 13, 909–922, doi:10.1080/01688639108405107.
[101]  Teuber, H.L.; Battersby, W.S.; Bender, M.B. Performance of complex visual tasks after cerebral lesions. J. Nerv. Ment. Dis. 1951, 114, 413–429.
[102]  Ishii, R.; Canuet, L.; Iwase, M.; Kurimoto, R.; Ikezawa, K.; Robinson, S.E.; Ukai, S.; Shinosaki, K.; Hirata, M.; Yoshimine, T.; et al. Right parietal activation during delusional state in episodic interictal psychosis of epilepsy: A report of two cases. Epilepsy Behav. 2006, 9, 367–372, doi:10.1016/j.yebeh.2006.06.017.
[103]  Redcay, E. The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neurosci. Biobehav. Rev. 2008, 32, 123–142, doi:10.1016/j.neubiorev.2007.06.004.
[104]  Nummenmaa, L.; Passamonti, L.; Rowe, J.; Engell, A.D.; Calder, A.J. Connectivity analysis reveals a cortical network for eye gaze perception. Cereb. Cortex. 2010, 20, 1780–1787, doi:10.1093/cercor/bhp244.
[105]  Redcay, E.; Dodell-Feder, D.; Pearrow, M.J.; Mavros, P.L.; Kleiner, M.; Gabrieli, J.D.; Saxe, R. Live face-to-face interaction during fMRI: A new tool for social cognitive neuroscience. NeuroImage 2010, 50, 1639–1647, doi:10.1016/j.neuroimage.2010.01.052.
[106]  Saxe, R.; Wexler, A. Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia 2005, 43, 1391–1399, doi:10.1016/j.neuropsychologia.2005.02.013.
[107]  Saxe, R.; Xiao, D.K.; Kovacs, G.; Perrett, D.I.; Kanwisher, N. A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia 2004, 42, 1435–1446, doi:10.1016/j.neuropsychologia.2004.04.015.
[108]  Pelphrey, K.A.; Morris, J.P.; Michelich, C.R.; Allison, T.; McCarthy, G. Functional anatomy of biological motion perception in posterior temporal cortex: An FMRI study of eye, mouth and hand movements. Cereb. Cortex. 2005, 15, 1866–1876, doi:10.1093/cercor/bhi064.
[109]  Perrett, D.I.; Smith, P.A.; Mistlin, A.J.; Chitty, A.J.; Head, A.S.; Potter, D.D.; Broennimann, R.; Milner, A.D.; Jeeves, M.A. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: A preliminary report. Behav. Brain Res. 1985, 16, 153–170, doi:10.1016/0166-4328(85)90089-0.
[110]  Blanke, O.; Arzy, S. The out-of-body experience: Disturbed self-processing at the temporo-parietal junction. Neuroscientist 2005, 11, 16–24, doi:10.1177/1073858404270885.
[111]  Perrett, D.I.; Hietanen, J.K.; Oram, M.W.; Benson, P.J. Organization and functions of cells responsive to faces in the temporal cortex. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 1992, 335, 23–30, doi:10.1098/rstb.1992.0003.
[112]  Perrett, D.I.; Smith, P.A.; Potter, D.D.; Mistlin, A.J.; Head, A.S.; Milner, A.D.; Jeeves, M.A. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc. Roy. Soc. Lond. B Biol. Sci. 1985, 223, 293–317, doi:10.1098/rspb.1985.0003.
[113]  Perrett, D.I.; Xiao, D.; Barraclough, N.E.; Keysers, C.; Oram, M.W. Seeing the future: Natural image sequences produce “anticipatory” neuronal activity and bias perceptual report. Q. J. Exp. Psychol. (Colchester) 2009, 62, 2081–2104, doi:10.1080/17470210902959279.
[114]  Arzy, S.; Seeck, M.; Ortigue, S.; Spinelli, L.; Blanke, O. Induction of an illusory shadow person. Nature 2006, 443, 287, doi:10.1038/443287a.
[115]  Brugger, P.; Blanke, O.; Regard, M.; Bradford, D.T.; Landis, T. Polyopic heautoscopy: Case report and review of the literature. Cortex 2006, 42, 666–674, doi:10.1016/S0010-9452(08)70403-9.
[116]  Hashimoto, R.I.; Lee, K.; Preus, A.; McCarley, R.W.; Wible, C.G. An fMRI Study of Functional Abnormalities in the verbal working memory system and the relationship to clinical symptoms in chronic schizophrenia. Cereb. Cortex. 2010, 20, 46–60, doi:10.1093/cercor/bhp079.
[117]  Ayhan, Y.; Abazyan, B.; Nomura, J.; Kim, R.; Ladenheim, B.; Krasnova, I.N.; Sawa, A.; Margolis, R.L.; Cadet, J.L.; Mori, S.; et al. Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: Evidence for neurodevelopmental origin of major psychiatric disorders. Mol. Psychiatr. 2011, 16, 293–306, doi:10.1038/mp.2009.144.
[118]  Sachdev, P. Schizophrenia-like psychosis and epilepsy: The status of the association. Am. J. Psychiatry. 1998, 155, 325–336.
[119]  Stewart, I. Environmental risk factors for temporal lobe epilepsy—is prenatal exposure to the marine algal neurotoxin domoic acid a potentially preventable cause? Med. Hypotheses 2010, 74, 466–481, doi:10.1016/j.mehy.2009.10.018.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133