全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Improvement of Biocatalysts for Industrial and Environmental Purposes by Saturation Mutagenesis

DOI: 10.3390/biom3040778

Keywords: biocatalysis, directed evolution, synthetic biology, protein engineering, industrial biotechnology, bioremediation, fine chemistry, saturation mutagenesis, screening methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

Laboratory evolution techniques are becoming increasingly widespread among protein engineers for the development of novel and designed biocatalysts. The palette of different approaches ranges from complete randomized strategies to rational and structure-guided mutagenesis, with a wide variety of costs, impacts, drawbacks and relevance to biotechnology. A technique that convincingly compromises the extremes of fully randomized vs. rational mutagenesis, with a high benefit/cost ratio, is saturation mutagenesis. Here we will present and discuss this approach in its many facets, also tackling the issue of randomization, statistical evaluation of library completeness and throughput efficiency of screening methods. Successful recent applications covering different classes of enzymes will be presented referring to the literature and to research lines pursued in our group. The focus is put on saturation mutagenesis as a tool for designing novel biocatalysts specifically relevant to production of fine chemicals for improving bulk enzymes for industry and engineering technical enzymes involved in treatment of waste, detoxification and production of clean energy from renewable sources.

References

[1]  Peters, M.W.; Meinhold, P.; Glieder, A.; Arnold, F.H. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc.?2003, 125, 13442–13450, doi:10.1021/ja0303790.
[2]  Bocola, M.; Otte, N.; Jaeger, K.E.; Reetz, M.T.; Thiel, W. Learning from directed evolution: Theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem?2004, 5, 214–223, doi:10.1002/cbic.200300731.
[3]  Bartsch, S.; Kourist, R.; Bornscheuer, U.T. Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew. Chem. Int. Ed.?2008, 47, 1508–1511, doi:10.1002/anie.200704606.
[4]  Glieder, A.; Farinas, E.T.; Arnold, F.H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol.?2002, 20, 1135–1139, doi:10.1038/nbt744.
[5]  Schmidt, D.M.Z.; Mundorff, E.C.; Dojka, M.; Bermudez, E.; Ness, J.E.; Govindarajan, S.; Babbitt, P.C.; Minshull, J.; Gerlt, J.A. Evolutionary potential of (β/α)(8)-barrels: Functional promiscuity produced by single substitutions in the enolase superfamily. Biochemistry?2003, 42, 8387–8393, doi:10.1021/bi034769a.
[6]  Bosma, T.; Danborsky, J.; Stucki, G.; Janssen, D.B. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl. Environ. Microbiol.?2002, 68, 3582–3587, doi:10.1128/AEM.68.7.3582-3587.2002.
[7]  Reetz, M.T.; Soni, P.; Acevedo, J.P.; Sanchis, J. Creation of an amino acid network of structurally coupled residues in the directed evolution of a thermostable enzyme. Angew. Chem. Int. Ed. Engl.?2009, 48, 8268–8272, doi:10.1002/anie.200904209.
[8]  Zumarraga, M.; Bulter, T.; Shleev, S.; Polaina, J.; Martinez-Arias, A.; Plou, F.J.; Ballesteros, A.; Alcalde, M. In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem. Biol.?2007, 14, 1052–1064, doi:10.1016/j.chembiol.2007.08.010.
[9]  Siegel, J.B.; Zanghellini, A.; Lovick, H.M.; Kiss, G.; Lambert, A.R.; St. Clair, J.L.; Gallaher, J.L.; Hilvert, D.; Gelb, M.H.; Stoddard, B.L.; et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science?2010, 329, 309–313, doi:10.1126/science.1190239.
[10]  Khersonsky, O.; Kiss, G.; R?thlisberger, D.; Dym, O.; Albeck, S.; Houk, K.N.; Baker, D.; Tawfik, D.S. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci. USA?2012, 109, 10358–10363, doi:10.1073/pnas.1121063109.
[11]  Merski, M.; Shoichet, B.K. Engineering a model protein cavity to catalyze the Kemp elimination. Proc. Natl. Acad. Sci. USA?2012, 109, 16179–16183, doi:10.1073/pnas.1208076109.
[12]  Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J.; et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science?2010, 329, 305–309, doi:10.1126/science.1188934.
[13]  Janssen, D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol.?2004, 8, 150–159, doi:10.1016/j.cbpa.2004.02.012.
[14]  Pavlova, M.; Klvana, M.; Prokop, Z.; Chaloupkova, R.; Banas, P.; Otyepka, M.; Wade, R.C.; Tsuda, M.; Nagata, Y.; Damborsky, J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol.?2009, 5, 727–733, doi:10.1038/nchembio.205.
[15]  Fasan, R.; Meharenna, Y.T.; Snow, C.D.; Poulos, T.L.; Arnold, F.H. Evolutionary history of a specialized p450 propane monooxygenase. J. Mol. Biol.?2008, 383, 1069–1080, doi:10.1016/j.jmb.2008.06.060.
[16]  Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature?1994, 370, 389–391, doi:10.1038/370389a0.
[17]  Ostermeier, M.; Shim, J.H.; Benkovic, S.J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol.?1999, 17, 1205–1209, doi:10.1038/70754.
[18]  Pelletier, J.N. A RACHITT for our toolbox. Nat. Biotechnol.?2001, 19, 314–315, doi:10.1038/86681.
[19]  Sieber, V.; Martinez, C.A.; Arnold, F.H. Libraries of hybrid proteins from distantly related sequences. Nat. Biotechnol.?2001, 19, 456–460, doi:10.1038/88129.
[20]  Wang, M.; Si, T.; Zhao, H. Biocatalyst development by directed evolution. Bioresour. Technol.?2012, 115, 117–125, doi:10.1016/j.biortech.2012.01.054.
[21]  Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature?2012, 485, 185–194, doi:10.1038/nature11117.
[22]  Yuan, L.; Kurek, I.; English, J.; Keenan, R. Laboratory-directed protein evolution. Microbiol. Mol. Biol. Rev.?2005, 69, 373–392, doi:10.1128/MMBR.69.3.373-392.2005.
[23]  Bloom, J.D.; Meyer, M.M.; Meinhold, P.; Otey, C.R.; MacMillan, D.; Arnold, F.H. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol.?2005, 15, 447–452, doi:10.1016/j.sbi.2005.06.004.
[24]  Valetti, F.; Gilardi, G. Directed evolution of enzymes for product chemistry. Nat. Prod. Rep.?2004, 21, 490–511, doi:10.1039/b202342n.
[25]  Farinas, E.T.; Bulter, T.; Arnold, F.H. Directed enzyme evolution. Curr. Opin. Biotechnol.?2001, 12, 545–551, doi:10.1016/S0958-1669(01)00261-0.
[26]  Romero, P.A.; Arnold, F.H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell. Biol.?2009, 10, 866–876, doi:10.1038/nrm2805.
[27]  Turner, N.J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol.?2009, 5, 567–573, doi:10.1038/nchembio.203.
[28]  Guo, F.; Xu, H.; Xu, H.; Yu, H. Compensation of the enantioselectivity-activity trade-off in the directed evolution of an esterase from Rhodobacter sphaeroides by site-directed saturation mutagenesis. Appl. Microbiol. Biotechnol.?2013, 97, 3355–3362, doi:10.1007/s00253-012-4516-z.
[29]  Reetz, M.T.; Bocola, M.; Carballeira, J.D.; Zha, D.; Vogel, A. Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew. Chem. Int. Ed. Engl.?2005, 44, 4192–4196, doi:10.1002/anie.200500767.
[30]  Reetz, M.T.; Carballeira, J.D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc.?2007, 2, 891–903, doi:10.1038/nprot.2007.72.
[31]  Loke, P.; Sim, T.S. A comparison of three site-directed mutagenesis kits. Z. Naturforsch. C?2001, 56, 810–813. 11724387
[32]  Reetz, M.T.; Prasad, S.; Carballeira, J.D.; Gumulya, Y.; Bocola, M. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: Rigorous comparison with traditional methods. J. Am. Chem. Soc.?2010, 132, 9144–9152, doi:10.1021/ja1030479.
[33]  Gumulya, Y.; Sanchis, J.; Reetz, M.T. Many pathways in laboratory evolution can lead to improved enzymes: How to escape from local minima. Chembiochem?2012, 13, 1060–1066, doi:10.1002/cbic.201100784.
[34]  Prasad, S.; Bocola, M.; Reetz, M.T. Revisiting the lipase from Pseudomonas aeruginosa: Directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Chemphyschem?2011, 12, 1550–1557, doi:10.1002/cphc.201100031.
[35]  Available online: http://www.reportlinker.com/p0747897-summary/World-Enzymes-Industry.html.
[36]  Engstr?m, K.; Nyhlén, J.; Sandstr?m, A.G.; B?ckvall, J.E. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. J. Am. Chem. Soc.?2010, 132, 7038–7042, doi:10.1021/ja100593j.
[37]  Wen, S.; Tan, T.; Zhao, H. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica. J. Biotechnol.?2012, 164, 248–253, doi:10.1016/j.jbiotec.2012.08.023.
[38]  Gumulya, Y.; Reetz, M.T. Enhancing the thermal robustness of an enzyme by directed evolution: Least favorable starting points and inferior mutants can map superior evolutionary pathways. Chembiochem?2011, 12, 2502–2510, doi:10.1002/cbic.201100412.
[39]  Reetz, M.T.; Soni, P.; Fernández, L.; Gumulya, Y.; Carballeira, J.D. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem. Commun. (Camb.)?2010, 46, 8657–8658, doi:10.1039/c0cc02657c.
[40]  Reetz, M.T.; Soni, P.; Fernández, L. Knowledge-guided laboratory evolution of protein thermolability. Biotechnol. Bioeng.?2009, 102, 1712–1717, doi:10.1002/bit.22202.
[41]  Wang, C.; Huang, R.; He, B.; Du, Q. Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinformatics?2012, 13, e263, doi:10.1186/1471-2105-13-263.
[42]  Gouveia-Oliveira, R.; Pedersen, A.G. Finding coevolving amino acid residues using row and column weighting of mutual information and multi-dimensional amino acid representation. Algorithms Mol. Biol.?2007, 2, 12, doi:10.1186/1748-7188-2-12.
[43]  Derbyshire, K.M.; Salvo, J.J.; Grindley, N.D. A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides. Gene?1986, 46, 145–152, doi:10.1016/0378-1119(86)90398-7.
[44]  Firnberg, E.; Ostermeier, M. PFunkel: Efficient, expansive, user-defined mutagenesis. PLoS One?2012, 7, e52031, doi:10.1371/journal.pone.0052031.
[45]  Dennig, A.; Shivange, A.V.; Marienhagen, J.; Schwaneberg, U. OmniChange: The sequence independent method for simultaneous site-saturation of five codons. PLoS One?2011, 6, e26222, doi:10.1371/journal.pone.0026222. 22039444
[46]  Walter, K.U.; Vamvaca, K.; Hilvert, D. An active enzyme constructed from a 9-amino acid alphabet. J. Biol. Chem.?2005, 280, 37742–37746, doi:10.1074/jbc.M507210200.
[47]  Reetz, M.T.; Kahakeaw, D.; Sanchis, J. Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis. Mol. Biosyst.?2009, 5, 115–122, doi:10.1039/b814862g.
[48]  Reetz, M.T.; Kahakeaw, D.; Lohmer, R. Addressing the numbers problem in directed evolution. Chembiochem?2008, 9, 1797–1804, doi:10.1002/cbic.200800298.
[49]  Reetz, M.T.; Wu, S. Greatly reduced amino acid alphabets in directed evolution: Making the right choice for saturation mutagenesis at homologous enzyme positions. Chem. Commun. (Camb.)?2008, 5499–5501, doi:10.1039/B813388C.
[50]  Kille, S.; Acevedo-Rocha, C.G.; Parra, L.P.; Zhang, Z.G.; Opperman, D.J.; Reetz, M.T.; Acevedo, J.P. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol.?2013, 2, 83–92, doi:10.1021/sb300037w.
[51]  Bosley, A.D.; Ostermeier, M. Mathematical expressions useful in the construction, description and evaluation of protein libraries. Biomol. Eng.?2005, 22, 57–61, doi:10.1016/j.bioeng.2004.11.002.
[52]  Mena, M.A.; Daugherty, P.S. Automated design of degenerate codon libraries. Protein Eng. Des. Sel.?2005, 18, 559–561, doi:10.1093/protein/gzi061.
[53]  Firth, A.E.; Patrick, W.M. Statistics of protein library construction. Bioinformatics?2005, 21, 3314–3315, doi:10.1093/bioinformatics/bti516.
[54]  Patrick, W.M.; Firth, A.E.; Blackburn, J.M. User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng.?2003, 16, 451–457, doi:10.1093/protein/gzg057.
[55]  Morra, S.; Giraudo, A.; di Nardo, G.; King, P.W.; Gilardi, G.; Valetti, F. Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-hydrogenase. PLoS One?2012, 7, e48400, doi:10.1371/journal.pone.0048400. 23133586
[56]  Koga, Y.; Kato, K.; Nakano, H.; Yamane, T. Inverting enantioselectivity of Burkholderia cepacia KWI-56lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. J. Mol. Biol.?2003, 331, 585–592, doi:10.1016/S0022-2836(03)00782-4.
[57]  Levin, A.M.; Weiss, G.A. Optimizing the affinity and specificity of proteins with molecular display. Mol. Biosyst.?2006, 2, 49–57, doi:10.1039/b511782h.
[58]  Granieri, L.; Baret, J.C.; Griffiths, A.D.; Merten, C.A. High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. Chem. Biol.?2010, 17, 229–235, doi:10.1016/j.chembiol.2010.02.011.
[59]  Tsotsou, G.E.; Cass, A.E.G.; Gilardi, G. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants. Biosens. Bioelectron.?2002, 17, 119–131, doi:10.1016/S0956-5663(01)00285-8.
[60]  Despotovic, D.; Vojcic, L.; Prodanovic, R.; Martinez, R.; Maurer, K.H.; Schwaneberg, U. Fluorescent assay for directed evolution of perhydrolases. J. Biomol. Screen.?2012, 17, 796–805, doi:10.1177/1087057112438464.
[61]  Sass, S.; Kadow, M.; Geitner, K.; Thompson, M.L.; Talmann, L.; Bottcher, D.; Schmidt, M.; Bornscheuer, U.T. A high-throughput assay method to quantify Baeyer-Villiger monooxygenase activity. Tetrahedron?2012, 68, 7575–7580, doi:10.1016/j.tet.2012.05.098.
[62]  Sideri, A.; Goyal, A.; di Nardo, G.; Tsotsou, G.E.; Gilardi, G. Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution. J. Inorg. Biochem.?2013, 120, 1–7, doi:10.1016/j.jinorgbio.2012.11.007.
[63]  Tsotsou, G.E.; Sideri, A.; Goyal, A.; di Nardo, G.; Gilardi, G. Identification of mutant Asp251Gly/Gln307His of cytochrome P450 BM3 for the generation of metabolites of diclofenac, ibuprofen and tolbutamide. Chemistry?2012, 18, 3582–3588, doi:10.1002/chem.201102470.
[64]  Di Nardo, G.; Gilardi, G. Optimization of the Bacterial Cytochrome P450 BM3 System for the production of human drug metabolites. Int. J. Mol. Sci.?2012, 13, 15901–15924, doi:10.3390/ijms131215901.
[65]  Tsotsou, G.E.; di Nardo, G.; Sadeghi, S.J.; Fruttero, R.; Lazzarato, L.; Bertinaria, M.; Gilardi, G. A rapid screening for cytochrome P450 catalysis on new chemical entities: Cytochrome P450 BM3 and 1,2,5-oxadiazole derivatives. J. Biomol. Screen.?2013, 18, 211–218, doi:10.1177/1087057112459351.
[66]  Stapleton, J.A.; Swartz, J.R. A cell-free microtiter plate screen for improved [FeFe] hydrogenases. PLoS One?2010, 5, e10554, doi:10.1371/journal.pone.0010554.
[67]  Chuah, J.A.; Tomizawa, S.; Yamada, M.; Tsuge, T.; Doi, Y.; Sudesh, K.; Numata, K. Characterization of site-specific mutations in a short-chain-length/medium-chain-length polyhydroxyalkanoate synthase: In vivo and in vitro studies of enzymatic activity and substrate specificity. Appl. Environ. Microbiol.?2013, 79, 3813–3821, doi:10.1128/AEM.00564-13.
[68]  Jakoblinnert, A.; van den Wittenboer, A.; Shivange, A.V.; Bocola, M.; Heffele, L.; Ansorge-Schumacher, M.; Schwaneberg, U. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. J. Biotechnol.?2013, 165, 52–62, doi:10.1016/j.jbiotec.2013.02.006.
[69]  Vojcic, L.; Despotovic, D.; Maurer, K.H.; Zacharias, M.; Bocola, M.; Martinez, R.; Schwaneberg, U. Reengineering of subtilisin Carlsberg for oxidative resistance. Biol. Chem.?2013, 394, 79–87. 23096572
[70]  Wu, Q.; Soni, P.; Reetz, M.T. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. J. Am. Chem. Soc.?2013, 135, 1872–1881, doi:10.1021/ja310455t.
[71]  Nallaseth, F.S.; Anderson, S. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter. Microb. Cell Fact.?2013, 12, e36, doi:10.1186/1475-2859-12-36.
[72]  Zheng, H.; Wang, X.; Yomano, L.P.; Geddes, R.D.; Shanmugam, K.T.; Ingram, L.O. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl. Environ. Microbiol.?2013, 79, 3202–3208, doi:10.1128/AEM.00149-13.
[73]  Zhou, H.; Qu, Y.; Kong, C.; Shen, E.; Wang, J.; Zhang, X.; Ma, Q.; Zhou, J. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Appl. Microbiol. Biotechnol.?2013, doi:10.1007/s00253-013-4814-0.
[74]  Phelan, R.M.; Townsend, C.A. Mechanistic insights into the bifunctional non-heme iron oxygenase carbapenem synthase by active site saturation mutagenesis. J. Am. Chem. Soc.?2013, 135, 7496–7502, doi:10.1021/ja311078s.
[75]  Geier, M.; Braun, A.; Fladischer, P.; Stepniak, P.; Rudroff, F.; Hametner, C.; Mihovilovic, M.D.; Glieder, A. Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation. FEBS J.?2013, 280, 3094–3108, doi:10.1111/febs.12270.
[76]  Molloy, E.M.; Field, D.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLoS One?2013, 8, e58530, doi:10.1371/journal.pone.0058530. 23505531
[77]  Shainsky, J.; Bernath-Levin, K.; Isaschar-Ovdat, S.; Glaser, F.; Fishman, A. Protein engineering of nitrobenzene dioxygenase for enantioselective synthesis of chiral sulfoxides. Protein Eng. Des. Sel.?2013, 26, 335–345, doi:10.1093/protein/gzt005.
[78]  Agudo, R.; Roiban, G.D.; Reetz, M.T. Induced axial chirality in biocatalytic asymmetric ketone reduction. J. Am. Chem. Soc.?2013, 135, 1665–1668, doi:10.1021/ja3092517.
[79]  Jakoblinnert, A.; Wachtmeister, J.; Schukur, L.; Shivange, A.V.; Bocola, M.; Ansorge-Schumacher, M.B.; Schwaneberg, U. Reengineered carbonyl reductase for reducing methyl-substituted cyclohexanones. Protein Eng. Des. Sel.?2013, 26, 291–298, doi:10.1093/protein/gzt001.
[80]  Sandstr?m, A.G.; Wikmark, Y.; Engstr?m, K.; Nyhlén, J.; B?ckvall, J.E. Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc. Natl. Acad. Sci. USA?2012, 109, 78–83, doi:10.1073/pnas.1111537108. 22178758
[81]  Korman, T.P.; Sahachartsiri, B.; Charbonneau, D.M.; Huang, G.L.; Beauregard, M.; Bowie, J.U. Dieselzymes: Development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol. Biofuels?2013, 6, e70, doi:10.1186/1754-6834-6-70.
[82]  Anbar, M.; Bayer, E.A. Approaches for improving thermostability characteristics in cellulases. Methods Enzymol.?2012, 510, 261–271, doi:10.1016/B978-0-12-415931-0.00014-8.
[83]  Sygmund, C.; Santner, P.; Krondorfer, I.; Peterbauer, C.K.; Alcalde, M.; Nyanhongo, G.S.; Guebitz, G.M.; Ludwig, R. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb. Cell Fact.?2013, 12, e38, doi:10.1186/1475-2859-12-38.
[84]  Yi, Z.L.; Pei, X.Q.; Wu, Z.L. Introduction of glycine and proline residues onto protein surface increases the thermostability of endoglucanase CelA from Clostridium thermocellum. Bioresour. Technol.?2011, 102, 3636–3638, doi:10.1016/j.biortech.2010.11.043.
[85]  Yi, Z.L.; Zhang, S.B.; Pei, X.Q.; Wu, Z.L. Design of mutants for enhanced thermostability of β-glycosidase BglY from Thermus thermophilus. Bioresour. Technol.?2013, 129, 629–633, doi:10.1016/j.biortech.2012.12.098.
[86]  Reetz, M.T.; Wilensek, S.; Zha, D.; Jaeger, K.E. Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew. Chem. Int. Ed. Engl.?2001, 40, 3589–3591, doi:10.1002/1521-3773(20011001)40:19<3589::AID-ANIE3589>3.0.CO;2-X.
[87]  Jochens, H.; Bornscheuer, U.T. Natural diversity to guide focused directed evolution. Chembiochem?2010, 11, 1861–1866, doi:10.1002/cbic.201000284.
[88]  Jochens, H.; Aerts, D.; Bornscheuer, U.T. Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Eng. Des. Sel.?2010, 23, 903–909, doi:10.1093/protein/gzq071.
[89]  Zheng, H.; Reetz, M.T. Manipulating the stereoselectivity of limonene epoxide hydrolase by directed evolution based on iterative saturation mutagenesis. J. Am. Chem. Soc.?2010, 132, 15744–15751, doi:10.1021/ja1067542.
[90]  Ye, L.J.; Wang, L.; Pan, Y.; Cao, Y. Changing the specificity of α-amino acid ester hydrolase toward para-hydroxyl cephalosporins synthesis by site-directed saturation mutagenesis. Biotechnol. Lett.?2012, 34, 1719–1724, doi:10.1007/s10529-012-0955-y.
[91]  Garrett, J.B.; Kretz, K.A.; O’Donoghue, E.; Kerovuo, J.; Kim, W.; Barton, N.R.; Hazlewood, G.P.; Short, J.M.; Robertson, D.E.; Gray, K.A. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol.?2004, 70, 3041–3046, doi:10.1128/AEM.70.5.3041-3046.2004.
[92]  Kille, S.; Zilly, F.E.; Acevedo, J.P.; Reetz, M.T. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat. Chem.?2011, 3, 738–743, doi:10.1038/nchem.1113.
[93]  Li, H.M.; Mei, L.H.; Urlacher, V.B.; Schmid, R.D. Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst. Appl. Biochem. Biotechnol.?2008, 144, 27–36, doi:10.1007/s12010-007-8002-5.
[94]  Ba, L.; Li, P.; Zhang, H.; Duan, Y.; Lin, Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnol. Bioeng?2013, doi:10.1002/bit.24960.
[95]  Wu, S.; Acevedo, J.P.; Reetz, M.T. Induced allostery in the directed evolution of an enantioselective Baeyer-Villiger monooxygenase. Proc. Natl. Acad. Sci. USA?2010, 107, 2775–2780, doi:10.1073/pnas.0911656107.
[96]  Reetz, M.T.; Wu, S. Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis. J. Am. Chem. Soc.?2009, 131, 15424–15432, doi:10.1021/ja906212k.
[97]  Willetts, A.; Joint, I.; Gilbert, J.A.; Trimble, W.; Mühling, M. Isolation and initial characterization of a novel type of Baeyer-Villiger monooxygenase activity from a marine microorganism. Microb. Biotechnol.?2012, 5, 549–559, doi:10.1111/j.1751-7915.2012.00337.x.
[98]  Minerdi, D.; Zgrablic, I.; Sadeghi, S.J.; Gilardi, G. Identification of a novel Baeyer-Villiger monooxygenase from Acinetobacter radioresistens: Close relationship to the Mycobacterium tuberculosis prodrug activator EtaA. Microb. Biotechnol.?2012, 5, 700–716, doi:10.1111/j.1751-7915.2012.00356.x.
[99]  Mascotti, M.L.; Juri Ayub, M.; Dudek, H.; Sanz, M.K.; Fraaije, M.W. Cloning, overexpression and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293. AMB Express?2013, 3, e33, doi:10.1186/2191-0855-3-33.
[100]  Gao, X.; Huang, F.; Feng, J.; Chen, X.; Zhang, H.; Wang, Z.; Wu, Q.; Zhu, D. Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site-saturation mutagenesis for D-phenylalanine synthesis. Appl. Environ. Microbiol.?2013, 79, 5078–5081, doi:10.1128/AEM.01049-13. 23728814
[101]  Paul, D.; Pandey, G.; Pandey, J.; Jain, R.K. Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol.?2005, 23, 135–142, doi:10.1016/j.tibtech.2005.01.001.
[102]  Goldsmith, M.; Ashani, Y.; Simo, Y.; Ben-David, M.; Leader, H.; Silman, I.; Sussman, J.L.; Tawfik, D.S. Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. Chem. Biol.?2012, 19, 456–466, doi:10.1016/j.chembiol.2012.01.017.
[103]  Du, W.; Li, W.; Sun, T.; Chen, X.; Liu, D. Perspectives for biotechnological production of biodiesel and impacts. Appl. Microbiol. Biotechnol.?2008, 79, 331–337, doi:10.1007/s00253-008-1448-8.
[104]  Parawira, W. Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol.?2012, 32, 172–186, doi:10.3109/07388551.2011.595384.
[105]  King, P.W. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim. Biophys. Acta?2013, 1827, 949–957, doi:10.1016/j.bbabio.2013.03.006.
[106]  Morra, S.; Valetti, F.; Sadeghi, S.J.; King, P.W.; Meyer, T.; Gilardi, G. Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode. Chem. Commun. (Camb.)?2011, 47, 10566–10568, doi:10.1039/c1cc14535e.
[107]  Vardar, G.; Wood, T.K. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol. Appl. Environ. Microbiol.?2004, 70, 3253–3562, doi:10.1128/AEM.70.6.3253-3262.2004.
[108]  Tao, Y.; Fishman, A.; Bentley, W.E.; Wood, T.K. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. J. Bacteriol.?2004, 186, 4705–4713, doi:10.1128/JB.186.14.4705-4713.2004.
[109]  Canada, K.A.; Iwashita, S.; Shim, H.; Wood, T.K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J. Bacteriol.?2002, 184, 344–349, doi:10.1128/JB.184.2.344-349.2002.
[110]  Fortin, P.D.; MacPherson, I.; Neau, D.B.; Bolin, J.T.; Eltis, L.D. Directed evolution of a ring-cleaving dioxygenase for polychlorinated biphenyl degradation. J. Biol. Chem.?2005, 280, 42307–42314, doi:10.1074/jbc.M510456200. 16227200
[111]  Ang, E.L.; Obbard, J.P.; Zhao, H. Directed evolution of aniline dioxygenase for enhanced bioremediation of aromatic amines. Appl. Microbiol. Biotechnol.?2009, 81, 1063–1070, doi:10.1007/s00253-008-1710-0.
[112]  Ang, E.L.; Obbard, J.P.; Zhao, H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J.?2007, 274, 928–939, doi:10.1111/j.1742-4658.2007.05638.x.
[113]  Leungsakul, T.; Keenan, B.G.; Yin, H.; Smets, B.F.; Wood, T.K. Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnol. Bioeng.?2005, 92, 416–426, doi:10.1002/bit.20602.
[114]  Caglio, R.; Valetti, F.; Caposio, P.; Gribaudo, G.; Pessione, E.; Giunta, C. Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring. Chembiochem?2009, 10, 1015–1024, doi:10.1002/cbic.200800836.
[115]  Di Nardo, G.; Roggero, C.; Campolongo, S.; Valetti, F.; Trotta, F.; Gilardi, G. Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges. Dalton Trans.?2009, 7, 6507–6512.
[116]  Caglio, R.; Pessione, E.; Valetti, F.; Giunta, C.; Ghibaudi, E. An EPR, thermostability and pH-dependence study of wild-type and mutant forms of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13. Biometals?2013, 26, 75–84, doi:10.1007/s10534-012-9595-x.
[117]  Micalella, C.; Martignon, S.; Bruno, S.; Pioselli, B.; Caglio, R.; Valetti, F.; Pessione, E.; Giunta, C.; Rizzi, M. X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: A multidisciplinary characterization of catechol 1,2 dioxygenase. Biochim. Biophys. Acta?2011, 1814, 817–823, doi:10.1016/j.bbapap.2010.09.008.
[118]  Chen, M.M.; Snow, C.D.; Vizcarra, C.L.; Mayo, S.L.; Arnold, F.H. Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng. Des. Sel.?2012, 25, 171–178, doi:10.1093/protein/gzs004.
[119]  Jordan, D.B.; Wagschal, K.; Fan, Z.; Yuan, L.; Braker, J.D.; Heng, C. Engineering lower inhibitor affinities in β-D-xylosidase of Selenomonas ruminantium by site-directed mutagenesis of Trp145. J. Ind. Microbiol. Biotechnol.?2011, 38, 1821–1835, doi:10.1007/s10295-011-0971-2.
[120]  Van Leeuwen, J.G.; Wijma, H.J.; Floor, R.J.; van der Laan, J.M.; Janssen, D.B. Directed evolution strategies for enantiocomplementary haloalkane dehalogenases: From chemical waste to enantiopure building blocks. Chembiochem?2012, 13, 137–148, doi:10.1002/cbic.201100579.
[121]  Frey, M. Hydrogenases: Hydrogen-activating enzymes. Chembiochem?2002, 3, 153–160, doi:10.1002/1439-7633(20020301)3:2/3<153::AID-CBIC153>3.0.CO;2-B.
[122]  Maeda, T.; Sanchez-Torres, V.; Wood, T.K. Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl. Microbiol. Biotechnol.?2008, 79, 77–86, doi:10.1007/s00253-008-1416-3.
[123]  Buhrke, T.; Lenz, O.; Krauss, N.; Friedrich, B.J. Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. Biol. Chem.?2005, 280, 23791–23796, doi:10.1074/jbc.M503260200.
[124]  Cornish, A.J.; Gartner, K.; Yang, H.; Peters, J.W.; Hegg, E.L. Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J. Biol. Chem.?2011, 286, 38341–38347, doi:10.1074/jbc.M111.254664.
[125]  Knorzer, P.; Silakov, A.; Foster, C.E.; Armstrong, F.A.; Lubitz, W.; Happe, T. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J. Biol. Chem.?2012, 286, 38341–38347.
[126]  Lautier, T.; Ezanno, P.; Baffert, C.; Fourmond, V.; Cournac, L.; Fontecilla-Camps, J.C.; Soucaille, P.; Bertrand, P.; Meynial-Salles, I.; Léger, C. The quest for a functional substrate access tunnel in FeFe hydrogenase. Faraday Discuss?2011, 148, 385–407, doi:10.1039/c004099c.
[127]  Stapleton, J.A.; Swartz, J.R. Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One?2010, 5, e15275, doi:10.1371/journal.pone.0015275.
[128]  Bingham, A.S.; Smith, P.R.; Swartz, J.R. Evolution of an [FeFe] hydrogenase with decreased oxygen sensitivity. Int. J. Hydrogen Energy?2012, 37, 2965–2976, doi:10.1016/j.ijhydene.2011.02.048.
[129]  Winkler, M.; Esselborn, J.; Happe, T. Molecular basis of [FeFe]-hydrogenase function: An insight into the complex interplay between protein and catalytic cofactor. Biochim. Biophys. Acta?2013, 1827, 974–985, doi:10.1016/j.bbabio.2013.03.004.
[130]  Reda, T.; Plugge, C.M.; Abram, N.J.; Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl. Acad. Sci. USA?2008, 105, 10654–10658, doi:10.1073/pnas.0801290105. 18667702
[131]  Andreadeli, A.; Platis, D.; Tishkov, V.; Popov, V.; Labrou, N.E. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+. FEBS J.?2008, 275, 3859–3869, doi:10.1111/j.1742-4658.2008.06533.x.
[132]  Andrews, F.H.; McLeish, M.J. Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes. FEBS J.?2013, doi:10.1111/febs.12459.
[133]  Goldsmith, M.; Tawfik, D.S. Directed enzyme evolution: Beyond the low-hanging fruit. Curr. Opin. Struct. Biol.?2012, 22, 406–412, doi:10.1016/j.sbi.2012.03.010.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133