全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Biotechnological Applications of Transglutaminases

DOI: 10.3390/biom3040870

Keywords: biocatalysis, transglutaminase, protein modification, protein labeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.

References

[1]  Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature 2011, 480, 471–479, doi:10.1038/nature10702.
[2]  Griffin, M.; Casadio, R.; Bergamini, C.M. Transglutaminases: Nature’s biological glues. Biochem. J. 2002, 368, 377–396, doi:10.1042/BJ20021234.
[3]  Shle?kin, A.G.; Danilov, N.P. Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application. Zh. Evol. Biokhim. Fiziol. 2011, 47, 3–14.
[4]  Autuori, F.; Farrace, M.G.; Oliverio, S.; Piredda, L.; Piacentini, M. “Tissue” transglutaminase and apoptosis. Adv. Biochem. Eng. Biotechnol. 1998, 62, 129–136.
[5]  Abe, S.; Yamashita, K.; Kohno, H.; Ohkubo, Y. Involvement of transglutaminase in the receptor-mediated endocytosis of mouse peritoneal macrophages. Biol. Pharm. Bull. 2000, 23, 1511–1513, doi:10.1248/bpb.23.1511.
[6]  Chen, J.S.; Mehta, K. Tissue transglutaminase: an enzyme with a split personality. Int. J. Biochem. Cell Biol. 1999, 31, 817–836, doi:10.1016/S1357-2725(99)00045-X.
[7]  Shridas, P.; Sharma, Y.; Balasubramanian, D. Transglutaminase-mediated cross-linking of alpha-crystallin: structural and functional consequences. FEBS Lett. 2001, 499, 245–250, doi:10.1016/S0014-5793(01)02565-0.
[8]  Shan, L.; Molberg, ?.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Sollid, L.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science 2002, 297, 2275–2279, doi:10.1126/science.1074129.
[9]  Schroeder, W.T.; Thacher, S.M.; Stewart-Galetka, S.; Annarella, M.; Chema, D.; Siciliano, M.J.; Davies, P.J.; Tang, H.Y.; Sowa, B.A.; Duvic, M. Type I keratinocyte transglutaminase: expression in human skin and psoriasis. J. Invest. Dermatol. 1992, 99, 27–34.
[10]  Ando, H.; Adachi, M.; Umeda, K.; Matsuura, A.; Nonaka, M.; Uchio, R.; Tanaka, H.; Motoki, M. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 1989, 53, 2613–2617, doi:10.1271/bbb1961.53.2613.
[11]  Zhu, Y.; Rinzema, A.; Tramper, J.; Bol, J. Microbial transglutaminase - a review of its production and application in food processing. Appl. Microbiol. Biotechnol. 1995, 44, 277–282, doi:10.1007/BF00169916.
[12]  Suzuki, S.; Izawa, Y.; Kobayashi, K.; Eto, Y.; Yamanaka, S.; Kubota, K.; Yokozeki, K. Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Biosci. Biotechnol. Biochem. 2000, 64, 2344–2351, doi:10.1271/bbb.64.2344.
[13]  Pedersen, L.C.; Yee, V.C.; Bishop, P.D.; Le Trong, I.; Teller, D.C.; Stenkamp, R.E. Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Protein Sci. 1994, 3, 1131–1135, doi:10.1002/pro.5560030720.
[14]  Ikura, K.; Nasu, T.; Yokota, H.; Tsuchiya, Y.; Sasaki, R.; Chiba, H. Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochemistry 1988, 27, 2898–2905, doi:10.1021/bi00408a035.
[15]  Kashiwagi, T.; Yokoyama, K.-I.; Ishikawa, K.; Ono, K.; Ejima, D.; Matsui, H.; Suzuki, E. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 2002, 277, 44252–44560.
[16]  Motoki, M.; Seguro, K. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 1998, 9, 204–210, doi:10.1016/S0924-2244(98)00038-7.
[17]  Zeugolis, D.I.; Panengad, P.P.; Yew, E.S.Y.; Sheppard, C.; Phan, T.T.; Raghunath, M. An in situ and in vitro investigation for the transglutaminase potential in tissue engineering. J. Biomed. Mater. Res. A 2010, 92, 1310–1320.
[18]  Cortez, J.; Bonner, P.L.; Griffin, M. Application of transglutaminases in the modification of wool textiles. Enzyme Microb. Technol. 2004, 34, 64–72, doi:10.1016/j.enzmictec.2003.08.004.
[19]  Chau, D.Y.S.; Brown, S.V.; Mather, M.L.; Hutter, V.; Tint, N.L.; Dua, H.S.; Rose, F.R.A.J.; Ghaemmaghami, A.M. Tissue transglutaminase (TG-2) modified amniotic membrane: a novel scaffold for biomedical applications. Biomed. Mater. 2012, 7, 045011, doi:10.1088/1748-6041/7/4/045011.
[20]  Zhu, Y.; Tramper, J. Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol. 2008, 26, 559–565, doi:10.1016/j.tibtech.2008.06.006.
[21]  Teixeira, L.S. M.; Feijen, J.; van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 2012, 33, 1281–1290, doi:10.1016/j.biomaterials.2011.10.067.
[22]  Gillet, S.M.F.G.; Chica, R.A.; Keillor, J.W.; Pelletier, J.N. Expression and rapid purification of highly active hexahistidine-tagged guinea pig liver transglutaminase. Protein Expr. Purif. 2004, 33, 256–264, doi:10.1016/j.pep.2003.10.003.
[23]  Yokoyama, K.-I.; Nakamura, N.; Seguro, K.; Kubota, K. Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci. Biotechnol. Biochem. 2000, 64, 1263–1270, doi:10.1271/bbb.64.1263.
[24]  Shi, Q.; Kim, S.-Y.; Blass, J.P.; Cooper, A.J.L. Expression in Escherichia coli and purification of hexahistidine-tagged human tissue transglutaminase. Protein Expr. Purif. 2002, 24, 366–373, doi:10.1006/prep.2001.1587.
[25]  Piper, J.L.; Gray, G.M.; Khosla, C. High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry 2002, 41, 386–393, doi:10.1021/bi011715x.
[26]  Roy, I.; Smith, O.; Clouthier, C.M.; Keillor, J.W. Expression, purification and kinetic characterisation of human tissue transglutaminase. Protein Expr. Purif. 2013, 87, 41–46, doi:10.1016/j.pep.2012.10.002.
[27]  Kobayashi, K.; Hashiguchi, K.; Yokozeki, K.; Yamanaka, S. Molecular clonging of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 1998, 62, 1109–1114, doi:10.1271/bbb.62.1109.
[28]  Plácido, D.; Fernandes, C.G.; Isidro, A.; Carrondo, M.A.; Henriques, A.O.; Archer, M. Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr. Purif. 2008, 59, 1–8.
[29]  Marx, C.K.; Hertel, T.C.; Pietzsch, M. Soluble expression of a pro-transglutaminase from Streptomyces mobaraensis in Escherichia coli. Enzyme Microb. Technol. 2007, 40, 1543–1550, doi:10.1016/j.enzmictec.2006.10.036.
[30]  Sommer, C.; Volk, N.; Pietzsch, M. Model based optimization of the fed-batch production of a highly active transglutaminase variant in Escherichia coli. Protein Expr. Purif. 2011, 77, 9–19, doi:10.1016/j.pep.2010.12.005.
[31]  Zhang, D.; Zhu, Y.; Chen, J. Microbial transglutaminase production: understanding the mechanism. Biotechnol. Genet. Eng. Rev. 2009, 26, 205–222, doi:10.5661/bger-26-205.
[32]  Zhao, X.; Shaw, A.C.; Wang, J.; Chang, C.-C.; Deng, J.; Su, J. A novel high-throughput screening method for microbial transglutaminases with high specificity toward Gln141 of human growth hormone. J. Biomol. Screen. 2010, 15, 206–212, doi:10.1177/1087057109356206.
[33]  Kikuchi, Y.; Date, M.; Yokoyama, K.; Umezawa, Y. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 2003, 69, 358–366, doi:10.1128/AEM.69.1.358-366.2003.
[34]  Liu, S.; Zhang, D.; Wang, M.; Cui, W.; Chen, K.; Du, G.; Chen, J.; Zhou, Z. The order of expression is a key factor in the production of active transglutaminase in Escherichia coli by co-expression with its pro-peptide. Microb. Cell Fact. 2011, 10, 112, doi:10.1186/1475-2859-10-112.
[35]  Chen, K.; Liu, S.; Wang, G.; Zhang, D.; Du, G.; Chen, J.; Shi, Z. Enhancement of Streptomyces transglutaminase activity and pro-peptide cleavage efficiency by introducing linker peptide in the C-terminus of the pro-peptide. J. Ind. Microbiol. Biotechnol. 2013, 40, 317–325, doi:10.1007/s10295-012-1221-y.
[36]  Yang, M.-T.; Chang, C.-H.; Wang, J.M.; Wu, T.K.; Wang, Y.-K.; Chang, C.-Y.; Li, T.T. Crystal structure and inhibition studies of transglutaminase from S. mobaraense. J. Biol. Chem. 2011, 286, 7301–7307.
[37]  Eder, J.; Fersht, A.R. Pro-sequence-assisted protein folding. Mol. Microbiol. 1995, 16, 609–614, doi:10.1111/j.1365-2958.1995.tb02423.x.
[38]  Suzuki, M.; Sakurai, K.; Lee, Y.-H.; Ikegami, T.; Yokoyama, K.; Goto, Y. A back hydrogen exchange procedure via the acid-unfolded state for a large protein. Biochemistry 2012, 51, 5564–5570, doi:10.1021/bi300495p.
[39]  Suzuki, M.; Yokoyama, K.; Lee, Y.-H.; Goto, Y. A two-step refolding of acid-denatured microbial transglutaminase escaping from the aggregation-prone intermediate. Biochemistry 2011, 50, 10390–10398, doi:10.1021/bi2010619.
[40]  Savile, C.K.; Janey, J.M.; Mundorff, E.C.; Moore, J.C.; Tam, S.; Jarvis, W.R.; Colbeck, J.C.; Krebber, A.; Fleitz, F.J.; Brands, J.; Devine, P.N.; Huisman, G.W.; Hughes, G.J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010, 329, 305–309, doi:10.1126/science.1188934.
[41]  Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem. Soc. Rev. 2012, 41, 1585–1605, doi:10.1039/c2cs15286j.
[42]  Brustad, E.M.; Arnold, F.H. Optimizing non-natural protein function with directed evolution. Curr. Opin. Chem. Biol. 2011, 15, 201–210, doi:10.1016/j.cbpa.2010.11.020.
[43]  Keillor, J.W.; Chica, R.A.; Chabot, N.; Vinci, V.; Pardin, C.; Fortin, E.; Gillet, S.M.F.G.; Nakano, Y.; Kaartinen, M.T.; Pelletier, J.N.; Lubell, W.D. The bioorganic chemistry of transglutaminase—from mechanism to inhibition and engineering. Can. J. Chem. 2008, 276, 271–276.
[44]  Marx, C.K.; Hertel, T.C.; Pietzsch, M. Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants. J. Biotechnol. 2008, 136, 156–162, doi:10.1016/j.jbiotec.2008.06.005.
[45]  Folk, J.; Cole, P. Mechanism of action of guinea pig liver transglutaminase. J. Biol. Chem. 1966, 241, 5518–5525.
[46]  Buettner, K.; Hertel, T.C.; Pietzsch, M. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 2012, 42, 987–996, doi:10.1007/s00726-011-1015-y.
[47]  Chen, K.; Liu, S.; Ma, J.; Zhang, D.; Shi, Z.; Du, G.; Chen, J. Deletion combined with saturation mutagenesis of N-terminal residues in transglutaminase from Streptomyces hygroscopicus results in enhanced activity and thermostability. Process Biochem. 2012, 47, 2329–2334, doi:10.1016/j.procbio.2012.09.013.
[48]  Tagami, U.; Shimba, N.; Nakamura, M.; Yokoyama, K.-I.; Suzuki, E.-I.; Hirokawa, T. Substrate specificity of microbial transglutaminase as revealed by three-dimensional docking simulation and mutagenesis. Protein Eng. Des. Sel. 2009, 22, 747–752, doi:10.1093/protein/gzp061.
[49]  Coussons, P.J.; Price, N.C.; Kelly, S.M.; Smith, B.; Sawyer, L. Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem. J. 1992, 282, 929–930.
[50]  Hu, B.H.; Messersmith, P.B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 2003, 125, 14298–14299, doi:10.1021/ja038593b.
[51]  Mero, A.; Spolaore, B.; Veronese, F.M.; Fontana, A. Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug. Chem. 2009, 20, 384–389, doi:10.1021/bc800427n.
[52]  Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules 2010, 11, 698–705, doi:10.1021/bm901284x.
[53]  Spolaore, B.; Raboni, S.; Ramos Molina, A.; Satwekar, A.; Damiano, N.; Fontana, A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012, 51, 8679–8689, doi:10.1021/bi301005z.
[54]  Sugimura, Y.; Hosono, M.; Wada, F.; Yoshimura, T.; Maki, M.; Hitomi, K. Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGase 2 and Factor XIIIA. J. Biol. Chem. 2006, 281, 17699–17706.
[55]  Sugimura, Y.; Yokoyama, K.; Nio, N.; Maki, M.; Hitomi, K. Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch. Biochem. Biophys. 2008, 477, 379–383, doi:10.1016/j.abb.2008.06.014.
[56]  Oteng-Pabi, S.K.; Keillor, J.W. Continuous enzyme-coupled assay for microbial transglutaminase activity. Anal. Biochem. 2013, 441, 169–173, doi:10.1016/j.ab.2013.07.014.
[57]  Lee, J.-H.; Song, C.; Kim, D.-H.; Park, I.-H.; Lee, S.-G.; Lee, Y.-S.; Kim, B.-G. Glutamine (Q)-peptide screening for transglutaminase reaction using mRNA display. Biotechnol. Bioeng. 2013, 110, 353–362, doi:10.1002/bit.24622.
[58]  Ohtsuka, T.; Sawa, A.; Kawabata, R.; Nio, N.; Motoki, M. Substrate specificities of microbial transglutaminase for primary amines. J. Agric. Food Chem. 2000, 48, 6230–6233, doi:10.1021/jf000302k.
[59]  Nonaka, M.; Matsuura, Y.; Motoki, M. Incorporation of a lysine- and lysine dipeptides into as1-Caesin by Ca2+ -independent microbial transglutaminase. Biosci. Biotech. Biochem. 1996, 60, 131–133, doi:10.1271/bbb.60.131.
[60]  Ikura, K.; Sasaki, R.; Motoki, M. Use of transglutaminase in quality-improvement and processing of food proteins. Agric. Food. Chem. 1992, 2, 389–407.
[61]  Lee, J.-H.; Song, E.; Lee, S.-G.; Kim, B.-G. High-throughput screening for transglutaminase activities using recombinant fluorescent proteins. Biotechnol. Bioeng. 2013, 110, 2865–2873, doi:10.1002/bit.24970.
[62]  Kulik, C.; Heine, E.; Weichold, O.; M?ller, M. Synthetic substrates as amine donors and acceptors in microbial transglutaminase-catalysed reactions. J. Mol. Catal. B Enzym. 2009, 57, 237–241, doi:10.1016/j.molcatb.2008.09.010.
[63]  Gundersen, M.T.; Keillor, J.W.; Pelletier, J.N. Microbial transglutaminase displays broad acyl-acceptor substrate specificity. Appl. Microbiol. Biotechnol. 2013, doi:10.1007/s00253-013-4886-x.
[64]  De Macédo, P.; Marrano, C.; Keillor, J.W. A direct continuous spectrophotometric assay for transglutaminase activity. Anal. Biochem. 2000, 285, 16–20, doi:10.1006/abio.2000.4713.
[65]  Leblanc, A.; Gravel, C.; Labelle, J.; Keillor, J.W. Kinetic studies of guinea pig liver transglutaminase reveal a general-base-catalyzed deacylation mechanism. Biochemistry 2001, 40, 8335–8342, doi:10.1021/bi0024097.
[66]  Gillet, S.M.F.G.; Pelletier, J.N.; Keillor, J.W. A direct fluorometric assay for tissue transglutaminase. Anal. Biochem. 2005, 347, 221–226, doi:10.1016/j.ab.2005.09.035.
[67]  Gnaccarini, C.; Ben-Tahar, W.; Lubell, W.D.; Pelletier, J.N.; Keillor, J.W. Fluorometric assay for tissue transglutaminase-mediated transamidation activity. Bioorg. Med. Chem. 2009, 17, 6354–6359, doi:10.1016/j.bmc.2009.07.031.
[68]  Jeitner, T.M.; Fuchsbauer, H.; Blass, J.P.; Cooper, A.J.L. A sensitive fluorometric assay for tissue transglutaminase. Anal. Biochem. 2001, 206, 198–206.
[69]  Wu, Y.; Tsai, Y. A rapid transglutaminase assay for high-throughput screening applications. J. Biomol. Screen. 2006, 11, 836–843, doi:10.1177/1087057106291585.
[70]  Kenniston, J.A.; Conley, G.P.; Sexton, D.J.; Nixon, A.E. A homogeneous fluorescence anisotropy assay for measuring transglutaminase 2 activity. Anal. Biochem. 2013, 436, 13–15.
[71]  Begg, G.E.; Holman, S.R.; Stokes, P.H.; Matthews, J.M.; Graham, R.M.; Iismaa, S.E. Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J. Biol. Chem. 2006, 281, 12603–12609.
[72]  Pinkas, D.M.; Strop, P.; Brunger, A.T.; Khosla, C. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 2007, 5, e327, doi:10.1371/journal.pbio.0050327.
[73]  Caron, N.S.; Munsie, L.N.; Keillor, J.W.; Truant, R. Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells. PLoS One 2012, 7, e44159.
[74]  Clouthier, C.M.; Mironov, G.G.; Okhonin, V.; Berezovski, M.V.; Keillor, J.W. Real-time monitoring of protein conformational dynamics in solution using kinetic capillary electrophoresis. Angew. Chem. Int. Ed. Engl. 2012, 51, 12464–12468, doi:10.1002/anie.201205575.
[75]  Mádi, A.; Kárpáti, L.; Kovács, A.; Muszbek, L.; Fésüs, L. High-throughput scintillation proximity assay for transglutaminase activity measurement. Anal. Biochem. 2005, 343, 256–262.
[76]  Besheer, A.; Hertel, T.C.; Kressler, J.; M?der, K.; Pietzsch, M. Enzymatically-catalyzed HESylation using microbial transglutaminase: Proof of feasibility. J. Pharm. Sci. 2009, 98, 4420–4428, doi:10.1002/jps.21675.
[77]  Abe, H.; Goto, M.; Kamiya, N. Protein lipidation catalyzed by microbial transglutaminase. Chemistry 2011, 17, 14004–14008.
[78]  Mori, Y.; Wakabayashi, R.; Goto, M.; Kamiya, N. Protein supramolecular complex formation by site-specific avidin-biotin interactions. Org. Biomol. Chem. 2013, 11, 914–922.
[79]  Touati, J.; Angelini, A.; Hinner, M.J.; Heinis, C. Enzymatic cyclisation of peptides with a transglutaminase. Chembiochem 2011, 12, 38–42.
[80]  Strop, P.; Liu, S.-H.; Dorywalska, M.; Delaria, K.; Dushin, R.G.; Tran, T.-T.; Ho, W.-H.; Farias, S.; Casas, M.G.; Abdiche, Y.; Zhou, D.; Chandrasekaran, R.; Samain, C.; Loo, C.; Rossi, A.; Rickert, M.; Krimm, S.; Wong, T.; Chin, S.M.; Yu, J.; Dilley, J.; Chaparro-Riggers, J.; Filzen, G.F.; O’Donnell, C.J.; Wang, F.; Myers, J.S.; Pons, J.; Shelton, D.L.; Rajpal, A. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 2013, 20, 161–167, doi:10.1016/j.chembiol.2013.01.010.
[81]  Jeger, S.; Zimmermann, K.; Blanc, A.; Grünberg, J.; Honer, M.; Hunziker, P.; Struthers, H.; Schibli, R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. Engl. 2010, 49, 9995–9997.
[82]  Kamiya, N.; Abe, H. New fluorescent substrates of microbial transglutaminase and its application to peptide tag-directed covalent protein labeling. Bioconjugation Protoc. 2011, 751, 81–94.
[83]  Kamiya, N.; Abe, H.; Goto, M.; Tsuji, Y.; Jikuya, H. Fluorescent substrates for covalent protein labeling catalyzed by microbial transglutaminase. Org. Biomol. Chem. 2009, 7, 3407–3412.
[84]  Mori, Y.; Goto, M.; Kamiya, N. Transglutaminase-mediated internal protein labeling with a designed peptide loop. Biochem. Biophys. Res. Commun. 2011, 410, 829–833, doi:10.1016/j.bbrc.2011.06.073.
[85]  Gnaccarini, C.; Ben-Tahar, W.; Mulani, A.; Roy, I.; Lubell, W.D.; Pelletier, J.N.; Keillor, J.W. Site-specific protein propargylation using tissue transglutaminase. Org. Biomol. Chem. 2012, 10, 5258–5265.
[86]  Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 2001, 40, 2004–2021, doi:10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
[87]  Hingorani, D. V; Randtke, E.A.; Pagel, M.D. A catalyCEST MRI contrast agent that detects the enzyme-catalyzed creation of a covalent bond. J. Am. Chem. Soc. 2013, 135, 6396–6398, doi:10.1021/ja400254e.
[88]  Kitaoka, M.; Tsuruda, Y.; Tanaka, Y.; Goto, M.; Mitsumori, M.; Hayashi, K.; Hiraishi, Y.; Miyawaki, K.; Noji, S.; Kamiya, N. Transglutaminase-mediated synthesis of a DNA-(enzyme)n probe for highly sensitive DNA detection. Chemistry 2011, 17, 5387–5392, doi:10.1002/chem.201003744.
[89]  Takahara, M.; Hayashi, K.; Goto, M.; Kamiya, N. Tailing DNA aptamers with a functional protein by two-step enzymatic reaction. J. Biosci. Bioeng. 2013, doi:10.1016/j.jbiosc.2013.05.025.
[90]  Kitaoka, M.; Mitsumori, M.; Hayashi, K.; Hiraishi, Y.; Yoshinaga, H.; Nakano, K.; Miyawaki, K.; Noji, S.; Goto, M.; Kamiya, N. Transglutaminase-mediated in situ hybridization (TransISH) system: a new methodology for simplified mRNA detection. Anal. Chem. 2012, 84, 5885–5891, doi:10.1021/ac2034198.
[91]  Watts, S.W.; Priestley, J.R.C.; Thompson, J.M. Serotonylation of vascular proteins important to contraction. PLoS One 2009, 4, e5682.
[92]  Walther, D.J.; Stahlberg, S.; Vowinckel, J. Novel roles for biogenic monoamines: from monoamines in transglutaminase-mediated post-translational protein modification to monoaminylation deregulation diseases. FEBS J. 2011, 278, 4740–4755, doi:10.1111/j.1742-4658.2011.08347.x.
[93]  Lin, J.C.-Y.; Chou, C.-C.; Gao, S.; Wu, S.-C.; Khoo, K.-H.; Lin, C.-H. An in vivo tagging method reveals that Ras undergoes sustained activation upon transglutaminase-mediated protein serotonylation. Chembiochem 2013, 14, 813–817, doi:10.1002/cbic.201300050.
[94]  Chabot, N.; Moreau, S.; Mulani, A.; Moreau, P.; Keillor, J.W. Fluorescent probes of tissue transglutaminase reveal its association with arterial stiffening. Chem. Biol. 2010, 17, 1143–1150, doi:10.1016/j.chembiol.2010.06.019.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413