全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

DOI: 10.3390/biom3030369

Keywords: Amylose supramolecule, hydrophobic interaction, inclusion complex, vine-twining polymerization, selective inclusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization.

References

[1]  Schuerch, C. Polysaccharides. In Encyclopedia of Polymer Science and Engineering, 2nd. ed.; Mark, H.F., Bilkales, N., Overberger, C.G., Eds.; John Wiley & Sons: New York, NY, USA, 1986; Volume 13, pp. 87–162.
[2]  Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G.W., Sina?, P., Eds.; Wiley-VCH: Weinheim, Germany, 2000.
[3]  Glycoscience, 2nd. ed.; Fraser-Reid, B.O., Tatsuta, K., Thiem, J., Coté, G.L., Flitsch, S., Ito, Y., Kondo, H., Nishimura, S.-I., Yu, B., Eds.; Springer: Berlin, Germany, 2008.
[4]  Essentials of Glycobiology, 2nd. ed.; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009.
[5]  Paulsen, H. Advances in selective chemical syntheses of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 1982, 21, 155–173, doi:10.1002/anie.198201553.
[6]  Schmidt, R.R. New methods of the synthesis of glycosides and oligosaccharides—Are there alternative to the Koenigs-Knorr methods? Angew. Chem. Int. Ed. Engl. 1986, 25, 212–235, doi:10.1002/anie.198602121.
[7]  Toshima, K.; Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 1993, 93, 1503–1531, doi:10.1021/cr00020a006.
[8]  Mydock, L.K.; Demchenko, A.V. Mechanism of chemical O-glycosylation: From early studies to recent discoveries. Org. Biomol. Chem. 2010, 8, 497–510, doi:10.1039/b916088d.
[9]  Kobayashi, S.; Uyama, H.; Kimura, S. Enzymatic polymerization. Chem. Rev. 2001, 101, 3793–3818, doi:10.1021/cr990121l.
[10]  Shoda, S.; Izumi, R.; Fujita, M. Green process in glycotechnology. Bull. Chem. Soc. Jpn. 2003, 76, 1–13, doi:10.1246/bcsj.76.1.
[11]  Seibel, J.; J?rdening, H.-J.; Buchholz, K. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal. Biotranform. 2006, 24, 311–342, doi:10.1080/10242420600986811.
[12]  Kobayashi, S. New development of polysaccharide synthesis via enzymatic polymerization. Proc. Jpn. Acad. Ser. B 2007, 83, 215–247, doi:10.2183/pjab.83.215.
[13]  Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: An opportunity for green polymer chemistry. Chem. Rev. 2009, 109, 5288–5353, doi:10.1021/cr900165z.
[14]  Kadokawa, J.; Kobayashi, S. Polymer synthesis by enzymatic catalysis. Curr. Opin. Chem. Biol. 2010, 14, 145–153, doi:10.1016/j.cbpa.2009.11.020.
[15]  Kadokawa, J. Precision polysaccharide synthesis catalyzed by enzymes. Chem. Rev. 2011, 111, 4308–4345, doi:10.1021/cr100285v.
[16]  Lenz, R.W. Biodegradable polymers. Adv. Polym. Sci. 1993, 107, 1–40, doi:10.1007/BFb0027550.
[17]  Putseys, J.A.; Lamberts, L.; Delcour, J.A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51, 238–247, doi:10.1016/j.jcs.2010.01.011.
[18]  Shogren, R.L.; Greene, R.V.; Wu, Y.V. Complexes of starch polysaccharides and poly(ethylene-co-acrylic acid)–structure and stability in solution. J. Appl. Polym. Sci. 1991, 42, 1701–1709, doi:10.1002/app.1991.070420625.
[19]  Shogren, R.L. Complexes of starch with telechelic poly(ε-caprolactone) phosphate. Carbohydr. Polym. 1993, 22, 93–98, doi:10.1016/0144-8617(93)90071-B.
[20]  Ikeda, M.; Furusho, Y.; Okoshi, K.; Tanahara, S.; Maeda, K.; Nishino, S.; Mori, T.; Yashima, E. A luminescent poly(phenylenevinylene)-amylose composite with supramolecular liquid crystallinity. Angew. Chem. Int. Ed. 2006, 45, 6491–6495, doi:10.1002/anie.200602134.
[21]  Kida, T.; Minabe, T.; Okabe, S.; Akashi, M. Partially-methylated amyloses as effective hosts for inclusion complex formation with polymeric guests. Chem. Commun. 2007, 1559–1561.
[22]  Kida, T.; Minabe, T.; Nakano, S.; Akashi, M. Fabrication of novel multilayered thin films based on inclusion complex formation between amylose derivatives and guest polymers. Langmuir 2008, 24, 9227–9229, doi:10.1021/la801811r.
[23]  Frampton, M.J.; Claridge, T.D.W.; Latini, G.; Brovelli, S.; Cacialli, F.; Anderson, L. Amylose-wrapped luminescent conjugated polymers. Chem. Commun. 2008, 2797–2799.
[24]  Kaneko, Y.; Kyutoku, T.; Shimomura, N.; Kadokawa, J. Formation of amylose-poly(tetrahydrofuran) inclusion complexes in ionic liquid media. Chem. Lett. 2011, 40, 31–33, doi:10.1246/cl.2011.31.
[25]  Rachmawati, R.; Woortman, A.J.J.; Loos, K. Facile preparation method for inclusion complexes between amylose and polytetrahydrofurans. Biomacromolecules 2013, 14, 575–583, doi:10.1021/bm301994u.
[26]  Rachmawati, R.; Woortman, A.J.J.; Loos, K. Tunable properties of inclusion complexes between amylose and polytetrahydrofuran. Macromol. Biosci. 2013, 13, 767–776, doi:10.1002/mabi.201300022.
[27]  Kaneko, Y.; Kadokawa, J. Vine-twining polymerization: A new preparation method for well-defined supramolecules composed of amylose and synthetic polymers. Chem. Rec. 2005, 5, 36–46, doi:10.1002/tcr.20031.
[28]  Kaneko, Y.; Kadokawa, J. Synthesis of nanostructured bio-related materials by hybridization of synthetic polymers with polysaccharides or saccharide residues. J. Biomater. Sci. Polym. Ed. 2006, 17, 1269–1284, doi:10.1163/156856206778667479.
[29]  Kaneko, Y.; Kadokawa, J. Modern Trends in Macromolecular Chemistry; Lee, J.N., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009. Chapter 8; pp. 199–217.
[30]  Kadokawa, J. Preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. Polymers 2012, 4, 116–133, doi:10.3390/polym4010116.
[31]  Kitaoka, M.; Hayashi, K. Carbohydrate-processing phosphorolytic enzymes. Trends Glycosci. Glycotechnol. 2002, 14, 35–50, doi:10.4052/tigg.14.35.
[32]  Ziegast, G.; Pfannemüller, B. Phosphorolytic syntheses with di-, oligo- and multi-functional primers. Carbohydr. Res. 1987, 160, 185–204, doi:10.1016/0008-6215(87)80311-7.
[33]  Gidley, M.J.; Bulpin, P.V. Aggregation of amylose in aqueous systems: The effect of chain length phase behavior and aggregation kinetics. Macromolecules 1989, 22, 341–346, doi:10.1021/ma00191a062.
[34]  Niemann, C.; Sanger, W.; Pfannemüller, B.; Eigner, W.D.; Huber, A. Phospholytic synthesis of low-molecular-weight amyloses with modified terminal groups; Comparison of potato phosphorylase andmuscle phosphorylase b. In ACS Symp. Ser. Volume 458, Biotechnology of amylodextrin oligosaccharides; Friedman, R.B., Ed.; American Chemical Society: Washington, DC ,USA, 1991. Chapter 13; pp. 189–204.
[35]  Fujii, K.; Takata, H.; Yanase, M.; Terada, Y.; Ohdan, K.; Takaha, T.; Okada, S.; Kuriki, T. Bioengineering and application of novel glucose polymers. Biocatal. Biotransform. 2003, 21, 167–172.
[36]  Yanase, M.; Takaha, T.; Kuriki, T. α-Glucan phosphorylase and its use in carbohydrate engineering. J. Food Agric. 2006, 86, 1631–1635, doi:10.1002/jsfa.2513.
[37]  Ohdan, K.; Fujii, K.; Yanase, M.; Takaha, T.; Kuriki, T. Enzymatic synthesis of amylose. Biocatal. Biotransform. 2006, 24, 77–81, doi:10.1080/10242420600598152.
[38]  Nomura, S.; Kyutoku, T.; Shimomura, N.; Kaneko, Y.; Kadokawa, J. Preparation of inclusion complexes composed of amylose and biodegradable poly(glycolic acid-co-ε-caprolactone) by vine-twining polymerization and their lipase-catalyzed hydrolysis behavior. Polym. J. 2011, 43, 971–977, doi:10.1038/pj.2011.96.
[39]  Kitamura, S. Starch, Polymers, Natural and Synthetic. In The Polymeric Materials Encyclopedia, Synthesis, Properties and Applications; Salamone, C., Ed.; CRC Press: New York, NY, USA, 1996; Volume 10, pp. 7915–7922.
[40]  Kadokawa, J.; Kaneko, Y.; Tagaya, H.; Chiba, K. Synthesis of an amylose-polymer inclusion complex by enzymatic polymerization of glucose 1-phosphate catalyzed by phosphorylase enzyme in the presence of polyTHF: A new method for synthesis of polymer-polymer inclusion complexes. Chem. Commun. 2001, 2001, 449–450, doi:10.1039/b008180i.
[41]  Seneviratne, H.D.; Biliaderis, C.G. Action of α-amylases on amylose-lipid complex superstructures. J. Cereal Sci. 1991, 13, 129–143, doi:10.1016/S0733-5210(09)80030-1.
[42]  Kadokawa, J.; Kaneko, Y.; Nagase, S.; Takahashi, T.; Tagaya, H. Vine-twining polymerization: Amylose twines around polyethers to form amylose-polyether inclusion complexes. Chem. Eur. J. 2002, 8, 3321–3326.
[43]  Kadokawa, J.; Kaneko, Y.; Nakaya, A.; Tagaya, H. Formation of an amylose-polyester inclusion complex by means of phosphorylase-catalyzed enzymatic polymerization of α-D-glucose 1-phosphate monomer in the presence of poly(ε-caprolactone). Macromolecules 2001, 34, 6536–6528, doi:10.1021/ma010606n.
[44]  Kadokawa, J.; Nakaya, A.; Kaneko, Y.; Tagaya, H. Preparation of inclusion complexes between amylose and ester-containing polymers by means of vine-twining polymerization. Macromol. Chem. Phys. 2003, 204, 1451–1457, doi:10.1002/macp.200350004.
[45]  Kaneko, Y.; Saito, Y.; Nakaya, A.; Kadokawa, J.; Tagaya, H. Preparation of inclusion complexes composed of amylose and strongly hydrophobic polyesters in parallel enzymatic polymerization system. Macromolecules 2008, 41, 5665–5670.
[46]  Kobayashi, S.; Uyama, H.; Suda, S.; Namekawa, S. Dehydration polymerization in aqueous medium catalyzed by lipase. Chem. Lett. 1997, 105–105, doi:10.1246/cl.1997.105.
[47]  Suda, S.; Uyama, H.; Kobayashi, S. Dehydration polycondensation in water for synthesis of polyesters by lipase catalyst. Proc. Jpn. Acad. Ser. B 1999, 75, 201–206, doi:10.2183/pjab.75.201.
[48]  Kaneko, Y.; Beppu, K.; Kadokawa, J. Preparation of amylose/polycarbonate inclusion complexes by means of vine-twining polymerization. Macromol. Chem. Phys. 2008, 209, 1037–1042, doi:10.1002/macp.200800006.
[49]  Kaneko, Y.; Beppu, K.; Kadokawa, J. Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization. Biomacromolecules 2007, 8, 2983–2985, doi:10.1021/bm700670m.
[50]  Kaneko, Y.; Beppu, K.; Kyutoku, T.; Kadokawa, J. Selectivity and priority on inclusion of amylose toward guest polyethers and polyesters in vine-twining polymerization. Polym. J. 2009, 41, 279–286.
[51]  Kaneko, Y.; Beppu, K.; Kadokawa, J. Amylose selectively includes a specific range of molecular weights in poly(tetrahydrofuran)s in vine-twining polymerization. Polym. J. 2009, 41, 792–796, doi:10.1295/polymj.PJ2009104.
[52]  Kaneko, Y.; Ueno, K.; Yui, T.; Nakahara, K.; Kadokawa, J. Amylose’s recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization. Macromol. Biosci. 2011, 11, 1407–1415.
[53]  Kaneko, Y.; Fujisaki, K.; Kyutoku, T.; Furukawa, H.; Kadokawa, J. Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization. Chem. Asian J. 2010, 5, 1627–1633.
[54]  Kadokawa, J.; Kaneko, Y. Engineering of Polysaccharide Materials-by Phosphorylase-Catalyzed Enzymatic Chain-Elongation; Pan Stanford Publishing Pte. Ltd.: Temasek Boulevard, Singapore, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413