全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

DOI: 10.3390/biom3030449

Keywords: Zn-dependent alcohol dehydrogenase, Yarrowia lipolytica, biooxidation, short chain dehydrogenase/reductase, medium chain secondary alcohols, enantioselective reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect ( S)-selectivity and together with a highly ( R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

References

[1]  DeWildeman, S.M.A.; Sonke, T.; Schoemaker, H.E.; May, O. Biocatalytic reductions: From lab curiosity to first choice. Acc. Chem. Res. 2007, 40, 1260–1266, doi:10.1021/ar7001073.
[2]  Barth, G.; Gaillardin, C. Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology; Wolf, K., Ed.; Springer-Verlag, Berlin Heidelberg: New York, NY, USA, 1996; pp. 313–388.
[3]  Fickers, P.; Benetti, P.-H.; Waché, Y.; Marty, A.; Mauersberger, S.; Smit, M.S.; Nicaud, J.-M. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 2005, 5, 527–543, doi:10.1016/j.femsyr.2004.09.004.
[4]  Fantin, G.; Fogagnolo, M.; Medici, A.; Pedrini, P.; Fontana, S. Kinetic resolution of racemic secondary alcohols via oxidation with Yarrowia lipolytica strains. Tetrahedron-Asymmetry 2000, 11, 2367–2373, doi:10.1016/S0957-4166(00)00185-3.
[5]  Kroutil, W.; Mang, H.; Edegger, K.; Faber, K. Biocatalytic oxidation of primary and secondary alcohols. Adv. Synth. Catal. 2004, 346, 125–142, doi:10.1002/adsc.200303177.
[6]  Leskovac, V.; Trivic, S.; Pericin, D. The three zinc-containing alcohol dehydrogenases from baker’s yeast. FEMS Yeast Res. 2002, 2, 481–494.
[7]  Dujon, B.; Sherman, D.; Fischer, G.; Durrens, P.; Casaregola, S.; Lafontaine, I.; de Montigny, J.; Marck, C.; Neuveglise, C.; Talla, E.; et al. Genome evolution in yeasts. Nature 2004, 430, 35–44, doi:10.1038/nature02579.
[8]  Reid, M.F.; Fewson, C.A. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 1994, 20, 13–56, doi:10.3109/10408419409113545.
[9]  Passoth, V.; Sch?fer, B.; Liebel, B.; Weierstall, T.; Klinner, U. Yeast sequencing reports–molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH. Yeast 1998, 14, 1311–1325, doi:10.1002/(SICI)1097-0061(1998100)14:14<1311::AID-YEA315>3.0.CO;2-T.
[10]  Lin, Y.; He, P.; Wang, Q.; Lu, D.; Li, Z.; Wu, C.; Jiang, N. The alcohol dehydrogenase system in the xylose-fermenting yeast Candida maltosa. PLoS One 2010, 5, e11752.
[11]  Suwannarangsee, S.; Oh, D.-B.; Seo, J.-W.; Kim, C.H.; Rhee, S.K.; Kang, H.A.; Chulalaksananukul, W.; Kwon, O. Characterization of alcohol dehydrogenase 1 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol. 2010, 88, 497–507, doi:10.1007/s00253-010-2752-7.
[12]  Yurimoto, H.; Lee, B.; Yasuda, F.; Sakai, Y.; Kato, N. Alcohol dehydrogenases that catalyse methyl formate synthesis participate in formaldehyde detoxification in the methylotrophic yeast Candida boidinii. Yeast 2004, 21, 341–350, doi:10.1002/yea.1101.
[13]  PSORT II Prediction. Available online: http://psort.hgc.jp/form2.html (accessed on 12 September 2012).
[14]  Napora, K.; Wrodnigg, T.M.; Kosmus, P.; Thonhofer, M.; Robins, K.; Winkler, M. Yarrowia lipolytica dehydrogenase/reductase: An enzyme tolerant for lipophilic compounds and carbohydrate substrates. Bioorg. Med. Chem. Lett. 2013, 23, 3393–3395, doi:10.1016/j.bmcl.2013.03.064.
[15]  Huanting, L.; Naismith, J.H. A simple and efficient expression and purification system using two newly constructed vectors. Protein Expr. Purif. 2009, 63, 102–111, doi:10.1016/j.pep.2008.09.008.
[16]  Balzer, D.; Ziegelin, G.; Pansegrau, W.; Kruft, V.; Lanka, E. Kor B protein of promiscuous plasmid RP4 recognizes inverted sequence repetitions in regions essential for conjugative plasmid transfer. Nucleic Acid Res. 1992, 20, 1851–1858, doi:10.1093/nar/20.8.1851.
[17]  Saerens, K.; van Bogaert, I.; Soetaert, W.; Vandamme, E. Production of glucolipids and specialty fatty acids from sophorolipids by Penicillium decumbens naringinase: Optimization and kinetics. Biotechnol. J. 2009, 4, 517–524, doi:10.1002/biot.200800209.
[18]  Kosjek, B.; Stampfer, W.; Pogorevc, M.; Goessler, W.; Faber, K.; Kroutil, W. Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnol. Bioeng. 2004, 86, 55–62, doi:10.1002/bit.20004.
[19]  Pennacchio, A.; Sannino, V.; Sorrentino, G.; Rossi, M.; Raia, C.A.; Esposito, L. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzyl. Appl. Microbiol. Biotechnol. 2013, 97, 3949–3964, doi:10.1007/s00253-012-4273-z.
[20]  DeWildeman, S.; Sereinig, N. Enzymatic Reduction of Carbonyl Groups. In Science of Synthesis, Stereoselective Synthesis; De Vries, J.G., Molander, G.A., Evans, P.A., Eds.; Georg Thieme-Verlag: Stuttgart, Germany, 2011; pp. 113–208.
[21]  Hollmann, F.; Arends, I.W.C.E.; Buehler, K.; Schallmey, A.; Buehler, B. Enzyme-mediated oxidations for the chemist. Green Chem. 2011, 13, 226–265, doi:10.1039/c0gc00595a.
[22]  M?dje, K.; Schm?lzer, K.; Nidetzky, B.; Kratzer, R. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH. Microb. Cell Fact. 2012, 11, 1–7, doi:10.1186/1475-2859-11-1.
[23]  Anelli, P.L.; Tomba, C.; Uggeri, F. Optical resolution of 2-chloro-3-phenylmethoxypropanoic acid after derivatization with (S)-2-octanol by high-performance liquid chromatography. J. Chromatogr. 1992, 589, 346–348, doi:10.1016/0021-9673(92)80043-T.
[24]  Threeprom, J. (S)-(+)-2-Octanol as a chiral oil core for the microemulsion electrokinetic chromatographic separation of chiral basic drugs. Anal. Sci. 2007, 23, 1071–1075, doi:10.2116/analsci.23.1071.
[25]  Parra, M.; Vergara, J.; Hildalgo, P.; Barbera, J.; Sierra, T. (S)-Isoleucine and (R)-2-octanol as chiral precursors of new chiral liquid crystalline thiadiazoles: Synthesis, mesomorphic and ferroelectric properties. Liquid Cryst. 2006, 33, 739–745, doi:10.1080/02678290600722866.
[26]  Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987, 57, 267–272, doi:10.1016/0378-1119(87)90131-4.
[27]  Brouns, S.J.; Turnbull, A.P.; Willemen, H.L.; Akerboom, J.; van der Oost, J. Crystal structure and biochemical properties of the d-arabinose dehydrogenase from Sulfolobus solfataricus. J. Mol. Biol. 2007, 371, 1249–1260, doi:10.1016/j.jmb.2007.05.097.
[28]  Silva, C.R.; Souza, J.C.; Araújo, L.S.; Kagohara, E.; Garcia, T.P.; Pelizzari, V.H.; Andrade, L.H. Exploiting the enzymatic machinery of Arthrobacter atrocyaneus for oxidative kinetic resolution of secondary alcohols. J. Mol. Catal. B: Enzym. 2012, 83, 23–28, doi:10.1016/j.molcatb.2012.06.013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413