全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

DOI: 10.3390/biom3030514

Keywords: lipases, immobilization, biodiesel, oil from spent coffee ground

Full-Text   Cite this paper   Add to My Lib

Abstract:

Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.

References

[1]  Medina, A.R.; González-Moreno, P.A.; Esteban-Cerdán, L.; Molina-Grima, E. Biocatalysis: Towards ever greener biodiesel production. Biotechnol. Adv. 2009, 27, 398–408, doi:10.1016/j.biotechadv.2008.10.008.
[2]  Mittelbach, M.; Remschmidt, C. Biodiesel - The Comprehensive Handbook, 1st ed. ed.; B?rsedruk Ges. m.b.H: Vienna, 2004.
[3]  Uma, B.H.; Kim, Y.S. Review: A chance for Korea to advance algal-biodiesel technology. J. Ind. Eng. Chem. 2009, 15, 1–7.
[4]  Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306, doi:10.1016/j.biotechadv.2007.02.001.
[5]  Shah, S.; Sharma, S.; Gupta, M.N. Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuels 2004, 18, 154–159, doi:10.1021/ef030075z.
[6]  Oliveira, L.S.; Franca, A.S.; Camargos, R.R.S.; Ferraz, V.P. Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 2008, 99, 3244–3250, doi:10.1016/j.biortech.2007.05.074.
[7]  Calabrò, V.; Ricca, E.; de Paola, M.G.; Curcio, S.; Iorio, G. Kinetics of enzymatic trans-esterification of glycerides for biodiesel production. Bioprocess Biosyst. Eng. 2010, 33, 701–710, doi:10.1007/s00449-009-0392-z.
[8]  Kondamundi, N.; Mohapatra, S.K.; Misra, M. Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 2008, 56, 11757–11760, doi:10.1021/jf802487s.
[9]  Caetano, N.S.; Silva, V.F.M.; Mata, T.M. Valorization of coffee grounds for biodiesel production. Chem. Eng. Trans. 2012, 26, 267–272.
[10]  Khan, N.A.; Brown, J.B. The composition of coffee oil and its component fatty acids. J. Am. Oil Chem. Soc. 1953, 30, 606–609, doi:10.1007/BF02640975.
[11]  Nunes, A.A.; Franca, A.S.; Oliveira, L.S. Activated carbons from waste biomass: An alternative use for biodiesel production solid residues. Bioresour. Technol. 2009, 100, 1786–1792, doi:10.1016/j.biortech.2008.09.032.
[12]  Gui, M.M.; Lee, K.T.; Bhata, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653.
[13]  Yanagimoto, K.; Ochi, H.; Lee, K.G.; Takayuki, S. Antioxidative activities of fractions obtained from brewed coffee. J. Agricolture Food Chem. 2004, 52, 592–596, doi:10.1021/jf030317t.
[14]  Campo, P.; Zhao, Y.; Suidan, M.T.; Venosa, A.D.; Sorial, G.A. Biodegradation kitetics and toxicity of vegetable oils triacylglycelols under aerobic conditions. Chemosphere 2007, 68, 2054–2062, doi:10.1016/j.chemosphere.2007.02.024.
[15]  Schmid, R.D.; Verger, R. Lipases: Interfacial enzyme with attractive application. Angew. Chem. Int. Ed. 1998, 37, 1608–1633, doi:10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V.
[16]  Mittelbach, M. Lipase-catalyzed alcoholysis of sunflower oil. J. Am. Chem. Soc. 1990, 67, 168–170.
[17]  Nielsen, P.M.; Brask, J.; Fjerbaek, L. Enzymatic biodiesel production: Technical and economical considerations. Eur. J. Lipid Sci. Technol. 2008, 110, 692–700, doi:10.1002/ejlt.200800064.
[18]  Du, W.; Xu, Y.Y.; Liu, H.; Li, Z.B. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Mol. Catal. B Enzym. 2005, 37, 68–71, doi:10.1016/j.molcatb.2005.09.008.
[19]  Du, W.; Xu, Y.; Liu, D.; Zeng, J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B Enzym. 2004, 30, 125–129, doi:10.1016/j.molcatb.2004.04.004.
[20]  Christensen, M.W.; Andersen, L.; Husum, T.L.; Kirk, O. Industrial lipase immobilization. Eur. J. Lipid Sci. Technol. 2003, 105, 318–321, doi:10.1002/ejlt.200390062.
[21]  Ferrario, V.; Ebert, C.; Knapic, L.; Fattor, D.; Basso, A.; Spizzo, P.; Gardossi, L. Conformational changes of lipases in aqueous media: A comparative computational study and experimental implications. Adv. Synth. Catal. 2011, 353, 2466–2480, doi:10.1002/adsc.201100397.
[22]  Skjot, M.; de Maria, L.; Chatterjee, R.; Svendsen, A.; Patkar, S.A.; Ostergraad, P.R.; Brask, J. Understanding the plasticity of the alpha/beta hydrolase fold: Lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties. ChemBioChem 2009, 10, 520–527, doi:10.1002/cbic.200800668.
[23]  Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849–857, doi:10.1021/jm00145a002.
[24]  Xu, Y.; Du, W.; Liu, D. Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. J. Mol. Catal. B Enzym. 2005, 32, 241–245, doi:10.1016/j.molcatb.2004.12.013.
[25]  Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antartica lipase. J. Mol. Catal. B Enzym. 2002, 17, 151–155, doi:10.1016/S1381-1177(02)00022-X.
[26]  Anderson, E.; Larsson, K.; Kirk, O. One biocatalyst—many applications: The use of Candida antarctica. Biocatal. Biotransform. 1998, 16, 181–204, doi:10.3109/10242429809003198.
[27]  Salis, A.; Pinna, M.; Monduzzi, M.; Solinas, V. Biodiesel production from triolein and short chain alcohols through biocatalysis. J. Biotechnol. 2005, 119, 291–299, doi:10.1016/j.jbiotec.2005.04.009.
[28]  Marrink, S.J.; Tieleman, D.P. Perspective on the Martini model. Chem. Soc. Rev. 2013, doi:10.1039/C3CS60093A.
[29]  Friedrich, T.; Stuermer, R. Production of immobilized lipase from Pseudomonas and application for enantioselective reactions. U.S. Patent 6 596 520, 2003.
[30]  Gardossi, L. Immobilization of Enzymes and Control of Water Activity in Low-Water Media: Properties and Applications of Celite R-640 (Celite Rods). In Methods in Biotechnology: Enzyme in Non-Aqueous Solvents: Methods and Protocols; Vulfson, E.N., Halling, P.J., Holland, H., Eds.; Humana Press, Inc.: Totowa, NJ, USA, 2001; pp. 151–172.
[31]  Basso, A.; de Martin, L.; Ebert, C.; Gardossi, L.; Linda, P. High isolated yields in thermodynamically controlled peptide synthesis in toluene catalysed by thermolysin adsorbed on Celite R-640. Chem. Commun. 2000, 6, 467–468.
[32]  Basso, A.; Braiuca, P.; Cantone, S.; Ebert, C.; Linda, P.; Spizzo, P.; Caimi, P.; Hanefeld, U.; Degrassi, G.; Gardossi, L. In silico analysis of enzyme surface and glycosylation effect as a tool for efficient covalent immobilization of CalB and PGA on Sepabeads?. Adv. Synth. Catal. 2007, 349, 877–886, doi:10.1002/adsc.200600337.
[33]  Tanaka, A.; Sugimoto, H.; Muta, Y.; Mizuno, T.; Senoo, K.; Obata, H.; Inouye, K. Differential scanning calorimetry of the effects of Ca2+ on the thermal unfolding of Pseudomonas cepacia lipase. Biosci. Biotechnol. Biochem. 2003, 67, 207–210, doi:10.1271/bbb.67.207.
[34]  Pirozzi, D. Improvement of lipase stability in the presence of commercial triglycerides. Eur. J. Lipid Sci. Technol. 2003, 105, 608–613, doi:10.1002/ejlt.200300818.
[35]  Ulijn, R.V.; de Martin, L.; Halling, P.J.; Janssen, A.E.M.; Gardossi, L.; Moore, B.D. Solvent selection for solid-to-solid synthesis. Biotechnol. Bioeng. 2002, 80, 509–515, doi:10.1002/bit.10396.
[36]  Kaeida, M.; Samukawa, T.; Kondo, A.; Fukuda, H. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J. Biosci. Bioeng. 2001, 91, 12–15.
[37]  Ferrari, M.; Ravera, F.; De Angelis, E.; Suggi Liverani, F.; Navarini, L. Interfacial properties of coffee oils. Colloids Surf. A Physicochem. Eng. Aspects 2010, 365, 79–82.
[38]  Holcapek, M.; Jandera, P.; Fischer, J.; Prokes, B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. J. Chromatogr. A 1999, 858, 13–31, doi:10.1016/S0021-9673(99)00790-6.
[39]  D’Amelio, N.; de Angelis, E.; Navarini, L.; Schievano, E.; Mammi, S. Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy. Talanta 2013, 110, 118–127, doi:10.1016/j.talanta.2013.02.024.
[40]  Available online: http://md.chem.rug.nl/cgmartini/index.php/home (accessed on 12/05/2010).
[41]  Wolfgang, K.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637, doi:10.1002/bip.360221211.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133