全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biomolecules  2013 

Microbial Enzymes with Special Characteristics for Biotechnological Applications

DOI: 10.3390/biom3030597

Keywords: microbial-enzymes, thermophilic, alkalophilic, thermostable, protease, keratinase, amylase, xylanase, laccase

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

References

[1]  Pandey, A.; Selvakumar, P.; Soccol, C.R.; Nigam, P. Solid-state fermentation for the production of industrial enzymes. Curr. Sci. 1999, 77, 149–162.
[2]  Chirumamilla, R.R.; Muralidhar, R.; Marchant, R.; Nigam, P. Improving the quality of industrially important enzymes by directed evolution. Mol. Cell. Biochem. 2001, 224, 159–168, doi:10.1023/A:1011904405002.
[3]  Kumar, C.G.; Takagi, H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv. 1999, 17, 561–594, doi:10.1016/S0734-9750(99)00027-0.
[4]  Ahmed, S.; Riaz, S.; Jamil, A. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 2009, 84, 19–35, doi:10.1007/s00253-009-2079-4.
[5]  Wang, X.; Li, D.; Watanabe, T.; Shigemori, Y.; Mikawa, T.; Okajima, T.; Mao, L.Q.; Ohsaka, T. A glucose/o-2 biofuel cell using recombinant thermophilic enzymes. Int. J. Electrochem. Sci. 2012, 7, 1071–1078.
[6]  Banat, I.M.; Nigam, P.; Marchant, R. Isolation of a thermotolerant, fermentative yeasts growing at 52 °C and producing ethanol at 45 °C & 50 °C. World J. Microbiol. Biotechnol. 1992, 8, 259–263, doi:10.1007/BF01201874.
[7]  Wati, L.; Dhamija, S.S.; Singh, D.; Nigam, P.; Marchant, R. Characterisation of genetic control of thermotolerance in mutants of Saccharomyces cerevisiae. Genet. Eng. Biotechnol. 1996, 16, 19–26.
[8]  Zhang, S.B.; Wu, Z.L. Identification of amino acid residuesresponsible for increased thermostability of feruloyl esterase A from Aspergillus niger using the PoPMuSiC algorithm. Bioresour. Technol. 2011, 102, 2093–2096, doi:10.1016/j.biortech.2010.08.019.
[9]  Berka, R.M.; Grigoriev, I.V.; Otillar, R.; Salamov, A.; Grimwood, J.; Reid, I.; Ishmael, N.; John, T.; Darmond, C.; Moisan, M.C.; et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi. Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 2011, 29, 922–927, doi:10.1038/nbt.1976.
[10]  Cai, H.; Shi, P.; Bai, Y.; Huang, H.; Yuan, T.; Yang, P.; Luo, H.; Meng, K.; Yao, B. A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem. 2011, 46, 2341–2346, doi:10.1016/j.procbio.2011.09.018.
[11]  Mukherjee, A.K.; Adhikari, H.; Rai, S.K. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrical grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. J. Biochem. Eng. 2008, 39, 353–361, doi:10.1016/j.bej.2007.09.017.
[12]  Rahman, R.N.Z.R.A.; Basri, M.; Salleh, A.B. Thermostable alkaline protease from Bacillus stearothermophilus F1; Nutritional factors affecting protease production. Ann. Microbiol. 2003, 53, 199–210.
[13]  Chudasama, C.J.; Jani, S.A.; Jajda, H.M.; Pate, H.N. Optimization and production of alkaline protease from Bacillus thuringiensis CC7. J. Cell Tissue Res. 2010, 10, 2257–2262.
[14]  Genckal, H.; Tari, C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzym. Microb. Technol. 2006, 39, 703–710, doi:10.1016/j.enzmictec.2005.12.004.
[15]  Gupta, R.; Beg, Q.K.; Lorenz, P. Bacterial alkaline proteases: Molecular approaches and Industrial Applications. Appl. Microbiol. Biotechnol. 2002, 59, 15–32, doi:10.1007/s00253-002-0975-y.
[16]  Vijayalakshmi, S.; Venkat Kumar, S.; Thankamani, V. Optimization and cultural characterization of Bacillus RV.B2.90 producing alkalophilic thermophilic protease. Res. J. Biotechnol. 2011, 6, 26–32.
[17]  Gupta, A.; Joseph, B.; Mani, A.; Thomas, G. Biosynthesis and properties of an extracellular thermostable serine alkaline protease from Virgibacillus pantothenticus. World J. Microbiol. Biotechnol. 2008, 24, 237–243, doi:10.1007/s11274-007-9462-z.
[18]  Johnvesly, B.; Naik, G.K. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemical defined medium. Process Biochem. 2001, 37, 139–144, doi:10.1016/S0032-9592(01)00191-1.
[19]  Hadj-Ali, N.E.; Rym, A.; Basma, G.F.; Alya, S.K.; Safia, K.; Moncef, N. Biochemical and molecular characterization of a detergent stable alkaline serineprotease from a newly isolated Bacillus licheniformis NH1. Enzym. Microb. Technol. 2007, 40, 515–523, doi:10.1016/j.enzmictec.2006.05.007.
[20]  Gushterova, A.; Vasileva-Tonkova, E.; Dimova, E.; Nedkov, P.; Haertle, T. Keratinase production by newly isolated Antarctic actinomycete strains. World J. Microbiol. Biotechnol. 2005, 21, 831–834, doi:10.1007/s11274-004-2241-1.
[21]  Brandelli, A.; Daroit, D.J.; Riffel, A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 2010, 85, 1735–1750, doi:10.1007/s00253-009-2398-5.
[22]  Gupta, R.; Sharma, R.; Beg, Q.K. Revisiting microbial keratinases: Next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 2013, 33, 216–228, doi:10.3109/07388551.2012.685051.
[23]  Baihong, L.; Juan, Z.; Zhen, F.; Lei, G.; Xiangru, L.; Guocheng, D.; Jian, C. Enhanced thermostability of keratinase by computational design and empirical mutation. J. Ind. Microbiol. Biotechnol. 2013, 40, 697–704, doi:10.1007/s10295-013-1268-4.
[24]  Indhuja, S.; Shiburaj, S.; Pradeep, N.S.; Thankamani, V.; Abraham, T.K. Extracellular keratinolytic proteases from an Alkalophilic Streptomyces albidoflavus TBG-S13A5: Enhanced production and characterization. J. Pure Appl. Microbiol. 2012, 6, 1599–1607.
[25]  Liu, B.; Zhang, J.; Li, B.; Liao, X.; Du, G.; Chen, J. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus licheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J. Microbiol. Biotechnol. 2013, 29, 825–832, doi:10.1007/s11274-012-1237-5.
[26]  Nigam, P.; Singh, D. Enzyme and microbial systems involved in starch processing. Enzym. Microb. Technol. 1995, 17, 770–778, doi:10.1016/0141-0229(94)00003-A.
[27]  Pandey, A.; Soccol, C.R.; Nigam, P. Biotechnological potential of agro-industrial residues, II-Cassava Bagasse. Bioresour. Technol. 2000, 74, 81–87, doi:10.1016/S0960-8524(99)00143-1.
[28]  Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Soccol, C.R.; Pandey, A. α-amylases from microbial sources – An overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184.
[29]  Kumar, J.; Dahiya, J.S.; Singh, D.; Nigam, P. Production of endo-1, 4- β-glucanase by a biocontrol fungus Cladorrhinum foecundissimum. Bioresour. Technol. 2000, 75, 95–97, doi:10.1016/S0960-8524(00)00037-7.
[30]  Singh, D.; Dahiya, J.S.; Nigam, P. Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae. J. Basic Microbiol. 1995, 35, 117–121, doi:10.1002/jobm.3620350209.
[31]  Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R. Advances in Microbial Amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152, doi:10.1042/BA19990073.
[32]  Li, Y.; Niu, D.; Zhang, L.; Wang, Z.; Shi, G. Purification, characterization and cloning of a thermotolerant isoamylase produced from Bacillus sp. CICIM 304. J. Ind. Microbiol. Biotechnol. 2013, 40, 437–446, doi:10.1007/s10295-013-1249-7.
[33]  Gurumurthy, D.M.; Neelagund, S.E. Molecular characterization of industrially viable extreme thermostable novel alpha-amylase of geobacillus sp Iso5 Isolated from geothermal spring. J. Pure Appl. Microbiol. 2012, 6, 1759–1773.
[34]  Biotechnology for Agro-Industrial Residues Utilisation; Nigam, P., Pandey, A., Eds.; Springer Science Business Media B.V., 2009; pp. 1–466.
[35]  Polizeli, M.L.; Rizzatti, A.C.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591, doi:10.1007/s00253-005-1904-7.
[36]  Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23, doi:10.1016/j.femsre.2004.06.005.
[37]  Srinivasan, M.C.; Rele, M.V. Cellulase free xylanase from microorganisms and their applications to pulp and paper biotechnology: An overview. Indian J. Microbiol. 1995, 35, 93–101.
[38]  Garg, A.P.; Roberts, J.C.; McCarthy, A. Bleach boosting effect of cellulase free xylanase of Streptomyces thermoviolaceus and its comparison with two commercial enzyme preparations on birchwood Kraft pulp. Enzym. Microb. Biotechnol. 1998, 22, 594–598, doi:10.1016/S0141-0229(97)00250-0.
[39]  Kohli, U.; Nigam, P.; Singh, D.; Chaudhary, K. Thermostable, alkalophilic and cellulase free xylanase production by Thermonoactinomyces thalophilus subgroup C. Enzym. Microb. Technol. 2001, 28, 606–610, doi:10.1016/S0141-0229(01)00320-9.
[40]  Marques, S.; Alves, L.; Ribeiro, S.; Girio, F.M.; Amaralcollaco, M.T. Characterisation of a thermotolerant and alkalotolerant xylanase from a Bacillus sp. Appl. Biochem. Biotechnol. A 1998, 73, 159–172, doi:10.1007/BF02785652.
[41]  Jhamb, K.; Sahoo, D.K. Production of soluble recombinant proteins in Escherichia coli: Effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 2012, 123, 135–143, doi:10.1016/j.biortech.2012.07.011.
[42]  Prade, R.A. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 1996, 13, 100–131, doi:10.1080/02648725.1996.10647925.
[43]  Luo, H.; Wang, K.; Huang, H.; Shi, P.; Yang, P.; Yao, B. Gene cloning, expression and biochemical characterization of an alkali-tolerant b-mannanase from Humicola insolens Y1. J. Ind. Microbiol. Biotechnol. 2012, 39, 547–555, doi:10.1007/s10295-011-1067-8.
[44]  Luo, H.; Li, J.; Yang, J.; Wang, H.; Yang, Y.; Huang, H.; Shi, P.; Yuan, T.; Fan, Y.; Yao, B. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 2009, 13, 849–857, doi:10.1007/s00792-009-0272-0.
[45]  Mamo, G.; Thunnissen, M.; Hatti-Kaul, R.; Mattiasson, B. An alkaline active xylanase: Insights into mechanisms of high pH catalytic adaptation. Biochimie 2009, 91, 1187–1196, doi:10.1016/j.biochi.2009.06.017.
[46]  Du, Y.; Shi, P.; Huang, H.; Zhang, X.; Luo, H.; Wang, Y.; Yao, B. Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour. Technol. 2013, 130, 161–167, doi:10.1016/j.biortech.2012.12.067.
[47]  Nigam, P.; Pandey, A.; Prabhu, K.A. Cellulase and ligninase production by Basidiomycetes culture in solid-state fermentation. Biol. Wastes 1987a, 20, 1–9, doi:10.1016/0269-7483(87)90080-2.
[48]  Nigam, P.; Pandey, A.; Prabhu, K.A. Ligninolytic activity of two Basidiomycetes moulds in the decomposition of bagasse. Biol. Wastes 1987b, 21, 1–10, doi:10.1016/0269-7483(87)90080-2.
[49]  Dahiya, J.S.; Singh, D.; Nigam, P. Characterisation of laccase produced by Coniotherium minitans. J. Basic Microbiol. 1998, 38, 349–359, doi:10.1002/(SICI)1521-4028(199811)38:5/6<349::AID-JOBM349>3.0.CO;2-B.
[50]  Robinson, T.; Chandran, B.; Nigam, P. Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzym. Microb. Technol. 2001, 29, 575–579, doi:10.1016/S0141-0229(01)00430-6.
[51]  Robinson, T.; Chandran, B.; Nigam, P. Studies on the decolourisation of an artificial effluent through lignolytic enzyme production by white-rot fungi in N-rich and N-limited media. Appl. Microbiol. Biotechnol. 2001b, 57, 810–813, doi:10.1007/s00253-001-0857-8.
[52]  Robinson, T.; Nigam, P. Remediation of textile dye-waste water using a white rot fungus Bjerkandera adusta through solid state fermentation (SSF). Appl. Biochem. Biotechnol. 2008, 151, 618–628, doi:10.1007/s12010-008-8272-6.
[53]  Dahiya, J.; Singh, D.; Nigam, P. Decolourisation of synthetic and spentwash-melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresour. Technol. 2001, 78, 95–98, doi:10.1016/S0960-8524(00)00119-X.
[54]  Dwivedi, P.; Vivikanand, V.; Pareek, N.; Sharma, A.; Singh, R.P. Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Appl. Biochem. Biotechnol. 2010, 160, 255–268, doi:10.1007/s12010-009-8654-4.
[55]  Gali, N.K.; Kotteazeth, S. Biophysical characterization of thermophilic laccase from the xerophytes: Cereus pterogonus and Opuntia vulgaris. Cellulose 2013, 20, 115–125, doi:10.1007/s10570-012-9811-4.
[56]  Gali, N.K.; Kotteazeth, S. Isolation, purification and characterization of thermophilic laccase from xerophyte Cereus pterogonus. Chem. Nat. Compd. 2012, 48, 451–456, doi:10.1007/s10600-012-0271-8.
[57]  Kumar, G.N.; Srikumar, K. Thermophilic laccase from xerophyte species Opuntia vulgaris. Biomed. Chromatogr. 2011, 25, 707–711, doi:10.1002/bmc.1506.
[58]  Kumar, G.N.; Srikumar, K. Characterization of xerophytic thermophilic laccase exhibiting metal ion-dependent dye decolorization potential. Appl. Biochem. Biotechnol. 2012, 167, 662–676, doi:10.1007/s12010-012-9721-9.
[59]  Quaratino, D.; Federici, F.; Petruccioli, M.; Fenice, M.; D’Annibale, A. Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Anton. Leeuw. Int J.G. 2007, 91, 57–69.
[60]  Uthandi, S.; Saad, B.; Humbard, M.A.; Maupin-Furlow, J.A. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl. Environ. Microbiol. 2010, 76, 733–743, doi:10.1128/AEM.01757-09.
[61]  Papinutti, L.; Dimitriu, P.; Forchiassin, F. Stabilization studies of Fomes sclerodermeus laccases. Bioresour. Technol. 2008, 99, 419–424, doi:10.1016/j.biortech.2006.11.061.
[62]  Mishra, A.; Kumar, S. Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochem. Eng. J. 2009, 46, 252–256, doi:10.1016/j.bej.2009.02.016.
[63]  Chernykh, A.; Myasoedova, N.; Kolomytseva, M.; Ferraroni, M.; Briganti, F.; Scozzafava, A.; Golovleva, L. Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J. Appl. Microbiol. 2008, 105, 2065–2075, doi:10.1111/j.1365-2672.2008.03924.x.
[64]  Nigam, P.; Prabhu, K.A. The effects of some added carbohydrates on cellulases and ligninase and decomposition of bagasse. Agric. Wastes 1986, 17, 293–299, doi:10.1016/0141-4607(86)90137-X.
[65]  Wongwilaiwalin, S.; Rattanachomsri, U.; Laothanachareon, T.; Eurwilaichitr, L.; Igarashi, Y.; Champreda, V. Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym. Microb. Technol. 2010, 47, 283–290, doi:10.1016/j.enzmictec.2010.07.013.
[66]  Hardiman, E.; Gibbs, M.; Reeves, R.; Bergquist, P. Directed Evolution of a thermophilic beta-glucosidase for Cellulosic Bioethanol Production. Appl. Biochem. Biotechnol. 2010, 161, 301–312, doi:10.1007/s12010-009-8794-6.
[67]  Nigam, P.; Prabhu, K.A. Thermal activation and stability of cellulases derived from two Basidiomycetes. Biotechnol. Lett. 1988, 10, 919–920, doi:10.1007/BF01027006.
[68]  Nigam, P.; Prabhu, K.A. Effect of cultural factors on cellulase biosynthesis in submerged bagasse fermentation by basidiomycetes cultures. J. Basic Microbiol. 1991, 31, 285–292, doi:10.1002/jobm.3620310411.
[69]  Nigam, P.; Prabhu, K.A. Isolation and recovery of cellulase and ligninase from crude enzymes produced by two basidiomycetes cultures in submerged bagasse fermentation. Sharkara 1988, 27, 40–46.
[70]  Nigam, P.; Prabhu, K.A. Microbial degradation of bagasse: Isolation and cellulolytic properties of Basidiomycetes Spp. from biomanure from a biogas plant. Agric. Wastes 1985, 12, 273–285, doi:10.1016/0141-4607(85)90026-5.
[71]  Reddivari, M.; Chirumamilla, R.; Nigam, P. Understanding lipase stereoselectivity. World J. Microbiol. Biotechnol. 2002, 18, 81–97, doi:10.1023/A:1014417223956.
[72]  Muralidhar, R.; Chirumamilla, R.R.; Nigam, P. Resolution of proglumide using lipase from Candida cylindraceae. Bioorg. Med. Chem. 2002, 10, 1471–1475, doi:10.1016/S0968-0896(01)00409-6.
[73]  Muralidhar, R.; Chirumamilla, R.R.; Marchant, R.; Nigam, P. A response surface approach for the comparison of lipase production by Candida cylindraceae using two different carbon sources. Biochem. Eng. J. 2001, 9, 17–23, doi:10.1016/S1369-703X(01)00117-6.
[74]  Pandey, A.; Benzamin, S.; Soccol, C.R.; Nigam, P.; Krieger, N.; Soccol, V.T. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 1999, 29, 119–131.
[75]  Muralidhar, R.; Chirumamilla, C.; Marchant, R.; Nigam, P. Lipases in racemic resolutions. J. Chem. Technol. Biotechnol. 2001, 76, 3–8, doi:10.1002/1097-4660(200101)76:1<3::AID-JCTB336>3.0.CO;2-8.
[76]  Sunnotel, O.; Nigam, P. Pectinolytic activity of bacteria isolated from soil and two fungal strains during submerged fermentation. World J. Microbiol. Biotechnol. 2002, 18, 835–839, doi:10.1023/A:1021209123641.
[77]  Zhou, D.M.; Nigam, P.; Marchant, R.; Jones, J. Production of salicylate hydroxylase from Pseudomonas putida UUC-1 and its application in the construction of biosensor. J. Chem. Technol. Biotechnol. 1995, 64, 331–338, doi:10.1002/jctb.280640404.
[78]  Banat, I.M.; Marchant, A.; Nigam, P.; Gaston, S.J.S.; Kelly, B.; Marchant, R. Production, partial characterization and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzym. Microb. Technol. 1994, 16, 665–670, doi:10.1016/0141-0229(94)90087-6.
[79]  Nigam, P.; Marchant, R. Production of enzyme dihydrofolate reductase by methotrexate-resistant bacteria isolated from soil. J. Chem. Technol. Biotechnol. 1993, 56, 35–40, doi:10.1002/jctb.280560107.
[80]  Nigam, P.; Banat, I.M.; Kelly, B.; Marchant, R. Dihydrofolate reductase synthesis in continuous culture using methotrexate-resistant Escherichia coli. Enzym. Microb. Technol. 1993, 15, 652–656, doi:10.1016/0141-0229(93)90064-9.
[81]  Bornscheuer, U.T.; Huisman, G.W.; Kazlausaks, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194, doi:10.1038/nature11117.
[82]  Trincone, A. Angling for uniqueness in enzymatic preparation of glycosides. Biomolecules 2013, 3, 334–350, doi:10.3390/biom3020334.
[83]  Riva, S. 1983–2013: The long wave of biocatalysis. Trends Biotechnol. 2013, 31, 120–121, doi:10.1016/j.tibtech.2012.10.013.
[84]  Trincone, A. Potential biocatalysts originating from sea environments. J. Mol. Catal. B-Enzym. 2010, 66, 241–256, doi:10.1016/j.molcatb.2010.06.004.
[85]  Dumon, C.; Songa, L.; Bozonneta, S.; Fauréa, R.; O’Donohue, M.J. Progress and future prospects for pentose-specific biocatalysts in biorefining. Proc. Biochem. 2012, 47, 346–357, doi:10.1016/j.procbio.2011.06.017.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413