全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine

DOI: 10.3390/bios3040385

Keywords: heavy metals, pyoverdine, environmental monitoring, minimum inhibitory concentration, optical detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

To date, different kinds of biosensing elements have been used effectively for environmental monitoring. Microbial cells seem to be well-suited for this task: they are cheap, adaptable to variable field conditions and give a measurable response to a broad number of chemicals. Among different pollutants, heavy metals are still a major problem for the environment. A reasonable starting point for the selection of a biorecognition element to develop a biosensor for metals could be that of a microorganism that exhibits good mechanisms to cope with metals. Pseudomonads are characterized by the secretion of siderophores (e.g., pyoverdine), low-molecular weight compounds that chelate Fe 3+ during iron starvation. Pyoverdine is easily detected by colorimetric assay, and it is suitable for simple online measurements. In this work, in order to evaluate pyoverdine as a biorecognition element for metal detection, the influence of metal ions (Fe 3+, Cu 2+, Zn 2+), but also of temperature, pH and nutrients, on microbial growth and pyoverdine regulation has been studied in P. fluorescens. Each of these variables has been shown to influence the synthesis of siderophore: for instance, the lower the temperature, the higher the production of pyoverdine. Moreover, the concentration of pyoverdine produced in the presence of metals has been compared with the maximum allowable concentrations indicated in international regulations (e.g., 98/83/EC), and a correlation that could be useful to build a colorimetric biosensor has been observed.

References

[1]  Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barceló, D. Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041, doi:10.1007/s00216-006-0574-3.
[2]  Chiadò, A.; Bosco, F.; Marmo, L. Preliminary studies for the use of bioluminescent bacteria in the development of wireless biosensors for environmental monitoring. Chem. Eng. Trans. 2011, 24, 1351–1356.
[3]  Gadd, G.M. Presidential address geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 3, 3–49, doi:10.1016/j.mycres.2006.12.001.
[4]  Appanna, V.D.; St. Pierre, M. Cellular response to a multiple-metal stress in Pseudomonas fluorescens. J. Biotechnol. 1996, 48, 129–136, doi:10.1016/0168-1656(96)01501-5.
[5]  Antonelli, M.L.; Campanella, L.; Ercole, P. Lichen-based biosensor for the determination of benzene and 2-chlorophenol: Microcalorimetric and amperometric investigations. Anal. Bioanal. Chem. 2005, 381, 1041–1048, doi:10.1007/s00216-004-3014-2.
[6]  Kularatne, K.I.A.; de Freitas, C.R. Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environ. Exp. Bot. 2013, 88, 24–32, doi:10.1016/j.envexpbot.2012.02.010.
[7]  O’Sullivan, D.J.; O’Gara, F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 1992, 56, 662–676.
[8]  Neilands, J.B. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem. 1995, 270, 26723–26726.
[9]  Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637–657, doi:10.1039/b906679a.
[10]  Braud, A.; Geoffroy, V.; Hoegy, F.; Mislin, G.L.A.; Schalk, I.J. Presence of the siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ. Microbiol. Rep. 2010, 2, 419–425, doi:10.1111/j.1758-2229.2009.00126.x.
[11]  Schalk, I.J.; Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: Different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 2013, 44, 1267–1277.
[12]  Schalk, I.J.; Guillon, L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: Implications for metal homeostasis. Environ. Microbiol. 2013, 15, 1661–1673, doi:10.1111/1462-2920.12013.
[13]  Sandy, M.; Butler, A. Microbial iron acquisition: Marine and terrestrial siderophores. Chem. Rev. 2009, 109, 4580–4595, doi:10.1021/cr9002787.
[14]  Braud, A.; Hoegy, F.; Jezequel, K.; Lebeau, T.; Schalk, I.J. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine—Iron uptake pathway. Environ. Microbiol. 2009, 11, 1079–1091, doi:10.1111/j.1462-2920.2008.01838.x.
[15]  Schalk, I.J.; Hannauer, M.; Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol. 2011, 13, 2844–2854, doi:10.1111/j.1462-2920.2011.02556.x.
[16]  Dimkpa, C.O.; Merten, D.; Svatos, A.; Büchel, G.; Kothe, E. Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J. Appl. Microbiol. 2009, 107, 1687–1696, doi:10.1111/j.1365-2672.2009.04355.x.
[17]  Schalk, I.J. Metal trafficking via siderophores in Gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. J. Inorg. Biochem. 2008, 102, 1159–1169, doi:10.1016/j.jinorgbio.2007.11.017.
[18]  Sharma, M.; Gohil, N.K. Optical features of the fluorophore azotobactin: Applications for iron sensing in biological fluids. Eng. Life Sci. 2010, 10, 304–310.
[19]  Gupta, V.; Saharan, K.; Kumar, L.; Gupta, R.; Sahai, V.; Mittal, A. Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol. Bioeng. 2008, 100, 284–296.
[20]  Kadam, M.S.; Chaudhari, A.B.; Chincholkar, S.B. Optimal pyoverdin-CPG composites for development of an optical biosensor to detect iron. Biochem. Suppl. Ser. A Membr. Cell Biol. 2012, 6, 249–254.
[21]  Yoder, M.F.; Kisaalita, W.S. Iron specificity of a biosensor based on fluorescent pyoverdin immobilized in sol-gel glass. J. Biol. Eng. 2011, 5, doi:10.1186/1754-1611-5-4.
[22]  Leclère, V.; Beaufort, S.; Dessoy, S.; Dehottay, P.; Jacques, P. Development of a biological test to evaluate the bioavailability of iron in culture media. J. Appl. Microbiol. 2009, 107, 1598–1605, doi:10.1111/j.1365-2672.2009.04345.x.
[23]  Meyer, J.M.; Abdallah, M.A. The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 1978, 107, 319–328.
[24]  Chiadò, A.; Bosco, F.; Marmo, L. Determination of the Minimum Inhibitory Concentration of Fe3+, Cu2+ and Zn2+ in Pseudomonas fluorescens. In Proceedings of the 3rd International Conference on Microbial Communication (MiCom 2012), Jena, Germany, 5–8 November 2012; p. 36.
[25]  Agarwal, L.; Isar, J.; Rajendra, K.S. Rapid screening procedures for identification of succinic acid producers. J. Biochem. Biophys. Methods 2005, 63, 24–32.
[26]  Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16, doi:10.1093/jac/48.suppl_1.5.
[27]  Meyer, J.; Gruffaz, C.; Raharinosy, V.; Bezverbnaya, I.; Schafer, M.; Budzikiewicz, H. Siderotyping of fluorescent Pseudomonas: Molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 2008, 21, 259–271.
[28]  Fallahzadeh, V.; Ahmadzadeh, M.; Sharifi, R. Growth and pyoverdine production kinetics of Pseudomonas aeruginosa 7NSK2 in an experimental fermentor. J. Agric. Technol. 2010, 6, 107–115.
[29]  Stanier, R.Y.; Palleroni, N.J.; Doudoroff, M. The aerobic Pseudomonads: A taxonomic study. J. Gen. Microbiol. 1966, 43, 159–271.
[30]  Poirier, I.; Jean, N.; Guary, J.C.; Bertrand, M. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: Physiological and biochemical aspects. Sci. Total Environ. 2008, 406, 76–87, doi:10.1016/j.scitotenv.2008.07.038.
[31]  Teitzel, G.M.; Parsek, M.R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2003, 69, 2313–2320.
[32]  Rathnayake, I.V.N.; Megharaj, M.; Krishnamurti, G.S.R.; Bolan, N.S.; Naidu, R. Heavy metal toxicity to bacteria—Are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 2013, 90, 1195–1200.
[33]  Hassen, A.; Saidi, N.; Cherif, M.; Boudabous, A. Resistance of environmental bacteria to heavy metals. Bioresour. Technol. 1998, 64, 7–15.
[34]  Yilmaz, E.I. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res. Microbiol. 2003, 154, 409–415.
[35]  Workentine, M.L.; Harrison, J.J.; Stenroos, P.U.; Ceri, H.; Turner, R.J. Pseudomonas fluorescens’ view of the periodic table. Environ. Microbiol. 2008, 10, 238–250.
[36]  Chen, X.; Shi, J.; Chen, Y.; Xu, X.; Xu, S.; Wang, Y. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 2006, 52, 308–316, doi:10.1139/w05-157.
[37]  Tom-petersen, A.; Hosbond, C.; Nybroe, O. Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol. Ecol. 2001, 38, 59–67, doi:10.1111/j.1574-6941.2001.tb00882.x.
[38]  Visca, P.; Colotti, G.; Serino, L.; Verzili, D.; Orsi, N.; Chiancone, E. Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl. Environ. Microbiol. 1992, 58, 2886–2893.
[39]  Teitzel, G.M.; Geddie, A.; de Long, S.K.; Kirisits, M.J.; Whiteley, M.; Parsek, M.R. Survival and growth in the presence of elevated copper: Transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7242–7256, doi:10.1128/JB.00837-06.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413