全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

The Effect of 3-Thiopheneacetic Acid in the Polymerization of a Conductive Electrotextile for Use in Biosensor Development

DOI: 10.3390/bios3030286

Keywords: 3-thiopheneacetic acid, electrotextile, biosensor, polypyrrole, antibody attachment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Investigations were conducted to develop an electrotextile using a nonwoven polypropylene fiber platform conformally coated in a conductive, functionalized copolymer of polypyrrole and 3-thiopheneacetic acid (3TAA). The objectives of this study were to determine: (1) if the inclusion of 3TAA in the polymerization process would have an effect on the availability of binding sites in the high-surface area electrotextile for biorecognition elements and (2) how the increase in the concentration of 3TAA would affect the physical characteristics of the coating, resistivity of the sample and availability of binding sites. It was found that the addition of 3TAA to the polymerization process resulted in an increase in the size of the polypyrrole coating, as well as the material resistivity and available binding sites for biorecognition elements. These factors were used to determine which of the tested concentrations was best for biosensor development. A polymer coated membrane sample containing a concentration within the range of 10–50 mg/mL of 3TAA was selected as the best for future biosensor work.

References

[1]  Wang, J. Analytical Electrochemistry, 2nd ed. ed.; John Wiley & Sons: New York, NY, USA, 2000; Volume XVI, p. 209.
[2]  Alocilja, E.C.; Radke, S.M. Market analysis of biosensors for food safety. Biosens. Bioelectron. 2003, 18, 841–846, doi:10.1016/S0956-5663(03)00009-5.
[3]  Swain, A. Biosensors: A new realism. Ann. Biol. Clin. 1992, 50, 175–179.
[4]  Warsinke, A. Biosensors for Food Analysis. In Frontiers in Biosensorics II: Practical Applications, 1st ed.; Scheller, F.W., Schubert, F., Fedrowitz, J., Eds.; Birkhauser Basel: Basel, Switzerland, 2000; pp. 121–140.
[5]  Munoz-Berbel, X.; Godino, N.; Laczka, O.; Baldrich, E.; Munoz, F.X.; Del Campo, J. Impedance-Based Biosensors for Pathogen Detection. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Zourob, M., Elwary, S., Turner, A., Eds.; Springer Science + Business Media LLC: New York, NY, USA, 2008; pp. 341–371.
[6]  Gregory, R.V.; Kimbrell, W.C.; Kuhn, H.H. Electrically conductive non-metallic textile coatings. J. Ind. Textil. 1991, 20, 167–175, doi:10.1177/152808379102000304.
[7]  Heisey, C.L.; Wightman, J.P.; Pittman, E.H.; Kuhn, H.H. Surface and adhesion properties of polypyrrole-coated textiles. Textil. Res. J. 1993, 63, 247–256, doi:10.1177/004051759306300501.
[8]  Kuhn, H.H.; Kimbrell, W.C. Method for Making Electrically Conductive Textile Materials. U.S. Patent 5,030,508, July 1991.
[9]  Kuhn, H.H.; Kimbrell, W.C.; Fowler, J.E.; Barry, C.N. Properties and applications of conductive textiles. Synthetic Met. 1993, 57, 3707–3712, doi:10.1016/0379-6779(93)90501-M.
[10]  Granato, F.; Scampicchio, M.; Bianco, A.; Mannino, S.; Bertarelli, C.; Zerbi, G. Disposable electrospun electrodes based on conducting nanofibers. Electroanalysis 2008, 20, 1374–1377, doi:10.1002/elan.200804185.
[11]  McGraw, S.K.; Anderson, M.J.; Alocilja, E.C.; Marek, P.J.; Senecal, K.J.; Senecal, A.G. Antibody immobilization on conductive polymer coated nonwoven fibers for biosensors. Sens. Transducers J. 2011, 13, 142–149.
[12]  Senecal, A.; Magnone, J.; Marek, P.; Senecal, K. Development of functional nanofibrous membrane assemblies towards biological sensing. React. Funct. Polym. 2008, 68, 1429–1434, doi:10.1016/j.reactfunctpolym.2008.06.022.
[13]  McGraw, S.; Alocilja, E.; Senecal, A.; Senecal, K. Synthesis of a functionalized polypyrrole coated electrotextile for use in biosensors. Biosensors 2012, 2, 465–478, doi:10.3390/bios2040465.
[14]  McGraw, S.K.; Alocilja, E.; Senecal, K.; Senecal, A. A resistance based biosensor that utilizes conductive microfibers for microbial pathogen detection. OJAB 2012, 1, 36–43, doi:10.4236/ojab.2012.13005.
[15]  Vaddiraju, S.; Seneca, K.; Gleason, K.K. Novel strategies for the deposition of –COOH functionalized conducting copolymer films and the assembly of inorganic nanoparticles on conducting polymer platforms. Adv. Funct. Mater. 2008, 18, 1929–1938, doi:10.1002/adfm.200800196.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133