全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

DOI: 10.3390/bios3030341

Keywords: perfluorocarbon, nanoemulsion, 19F MRI, imaging, stability, cell labeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

This report describes novel perfluorocarbon (PFC) nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI). 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL). This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm) and low polydispersity (<0.15), show a single peak in the 19F nuclear magnetic resonance spectrum at ?71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C). Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

References

[1]  Riess, J.G.; Krafft, M.P. Fluorinated materials for in vivo oxygen transport (blood substitutes), diagnosis and drug delivery. Biomaterials 1998, 19, 1529–1539, doi:10.1016/S0142-9612(98)00071-4.
[2]  Ahrens, E.T.; Zhong, J. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 2013, 26, 860–871, doi:10.1002/nbm.2948.
[3]  Janjic, J.M.; Ahrens, E.T. Fluorine-containing nanoemulsions for MRI cell tracking. Rev. Nanomed. Nanobiotechnol. 2009, 1, 492–501, doi:10.1002/wnan.35.
[4]  Winter, P.M.; Neubauer, A.M.; Caruthers, S.D.; Harris, T.D.; Robertson, J.D.; Williams, T.A.; Schmieder, A.H.; Hu, G.; Allen, J.S.; Lacy, E.K.; et al. Endothelial α(v)β3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2103–2109, doi:10.1161/01.ATV.0000235724.11299.76.
[5]  Lim, Y.T.; Cho, M.Y.; Kang, J.H.; Noh, Y.W.; Cho, J.H.; Hong, K.S.; Chung, J.W.; Chung, B.H. Perfluorodecalin/(InGaP/ZnS quantum dots) nanoemulsions as 19F MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells. Biomaterials 2010, 31, 4964–4971, doi:10.1016/j.biomaterials.2010.02.065.
[6]  O’Hanlon, C.E.; Amede, K.G.; O’Hear, M.R.; Janjic, J.M. NIR-labeled perfluoropolyether nanoemulsions for drug delivery and imaging. J. Fluor. Chem. 2012, 137, 27–33, doi:10.1016/j.jfluchem.2012.02.004.
[7]  Patel, S.K.; Patrick, M.J.; Pollock, J.A.; Janjic, J.M. Two-color fluorescent (NIR and visible) triphasic perfluorocarbon nanoemuslions. J. Biomed. Opt. 2013, 18, 101312, doi:10.1117/1.JBO.18.10.101312.
[8]  Patel, S.K.; Zhang, Y.; Pollock, J.A.; Janjic, J.M. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol) ether theranostic nanoemulsions—In vitro study. PLoS One 2013, 8, e55802, doi:10.1371/journal.pone.0055802.
[9]  Janjic, J.M.; Srinivas, M.; Kadayakkara, D.K.; Ahrens, E.T. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J. Am. Chem. Soc. 2008, 130, 2832–2841, doi:10.1021/ja077388j.
[10]  Hitchens, T.K.; Ye, Q.; Eytan, D.F.; Janjic, J.M.; Ahrens, E.T.; Ho, C. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn. Reson. Med. 2011, 65, 1144–1153, doi:10.1002/mrm.22702.
[11]  Van Heeswijk, R.B.; de Blois, J.; Kania, G.; Gonzales, C.; Blyszczuk, P.; Stuber, M.; Eriksson, U.; Schwitter, J. Selective in vivo visualization of immune-cell infiltration in a mouse model of autoimmune myocarditis by fluorine-19 cardiac magnetic resonance. Circ.Cardiovasc.Imaging 2013, 6, 277–284, doi:10.1161/CIRCIMAGING.112.000125.
[12]  Balducci, A.; Wen, Y.; Zhang, Y.; Helfer, B.M.; Hitchens, T.K.; Meng, W.S.; Wesa, A.K.; Janjic, J.M. A novel probe for the non-invasive detection of tumor-associated inflammation. Oncoimmunology 2013, 2, e23034, doi:10.4161/onci.23034.
[13]  Ahrens, E.T.; Flores, R.; Xu, H.; Morel, P.A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 2005, 23, 983–987, doi:10.1038/nbt1121.
[14]  Srinivas, M.; Turner, M.S.; Janjic, J.M.; Morel, P.A.; Laidlaw, D.H.; Ahrens, E.T. In vivo cytometry of antigen-specific t cells using 19F MRI. Magn. Reson. Med. 2009, 62, 747–753, doi:10.1002/mrm.22063.
[15]  Pittsburgh, C.I. Celsense, Pitt Trial to “See” Cells Fight Cancer. Available online: http://www.post-gazette.com/stories/business/news/celsense-pitt-trial-to-see-cells-fight-cancer-305182/ (accessed on 10 September 2013).
[16]  Helfer, B.M.; Balducci, A.; Nelson, A.D.; Janjic, J.M.; Gil, R.R.; Kalinski, P.; de Vries, I.J.; Ahrens, E.T.; Mailliard, R.B. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 2010, 12, 238–250, doi:10.3109/14653240903446902.
[17]  McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012, 8, 1719–1729, doi:10.1039/c2sm06903b.
[18]  Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of oil type on nanoemulsion formation and Ostwald ripening stability. Langmuir 2008, 24, 12758–12765.
[19]  Klein, D.H.; Burtner, D.B.; Trevino, L.A.; Arlauskas, R.A. Particle size distribution of concentrated perfluorocarbon emulsions by sedimentation field flow fractionation. Biomater. Artif. Cells Immobil. Biotechnol. 1992, 20, 859–864.
[20]  Jiang, Z.X.; Yu, Y.B. The design and synthesis of highly branched and spherically symmetric fluorinated oils and amphiles. Tetrahedron 2007, 63, 3982–3988, doi:10.1016/j.tet.2007.03.004.
[21]  Janjic, J.M.; Ahrens, E.T. Compositions and Methods for Producing Cellular Labels for Nuclear Magnetic Resonance Techniques. U.S. Patent 8,227,610, 12 March 2009.
[22]  Soman, N.R.; Lanza, G.M.; Heuser, J.M.; Schlesinger, P.H.; Wickline, S.A. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett. 2008, 8, 1131–1136, doi:10.1021/nl073290r.
[23]  Partlow, K.C.; Chen, J.; Brant, J.A.; Neubauer, A.M.; Meyerrose, T.E.; Creer, M.H.; Nolta, J.A.; Caruthers, S.D.; Lanza, G.M.; Wickline, S.A. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J. 2007, 21, 1647–1654, doi:10.1096/fj.06-6505com.
[24]  Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004, 21, 201–230, doi:10.1023/B:PHAM.0000016235.32639.23.
[25]  Rowe, R.C.; Sheskey, P.J.; Cook, W.G.; Fenton, M.E. American Pharmacists Association. Handbook of Pharmaceutical Excipients, 7th ed. ed.; APhA/Pharmaceutical Press: London, UK, 2012; p. 1033.
[26]  Reimund, J.M.; Rahmi, G.; Escalin, G.; Pinna, G.; Finck, G.; Muller, C.D.; Duclos, B.; Baumann, R. Efficacy and safety of an olive oil-based intravenous fat emulsion in adult patients on home parenteral nutrition. Aliment. Pharmacol. Ther. 2005, 21, 445–454.
[27]  Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300, doi:10.1016/S0142-9612(03)00331-4.
[28]  Putyatina, T.K.; Aprosin, U.D.; Afonin, N.I. The elimination peculiarities of perfluorocarbon emulsions stabilized with egg yolk phospholipid. Artif. Cells Blood Substit. Immobil. Biotechnol. 1994, 22, 1281–1285, doi:10.3109/10731199409138827.
[29]  Maa, Y.F.; Hsu, C.C. Performance of sonication and microfluidization for liquid-liquid emulsification. Pharm. Dev. Technol. 1999, 4, 233–240, doi:10.1081/PDT-100101357.
[30]  Hatton, T.A.; Alexandridis, P. Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A: Physicochem. Eng. Asp. 1995, 96, 1–46, doi:10.1016/0927-7757(94)03028-X.
[31]  Uskokovic, V.; Odsinada, R.; Djordjevic, S.; Habelitz, S. Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus. Arch. Oral Biol. 2011, 56, 521–532, doi:10.1016/j.archoralbio.2010.11.011.
[32]  Hu, L.; Chen, J.; Yang, X.; Caruthers, S.D.; Lanza, G.M.; Wickline, S.A. Rapid quantification of oxygen tension in blood flow with a fluorine nanoparticle reporter and a novel blood flow-enhanced-saturation-recovery sequence. Magn. Reson. Med. 2013, 70, 176–183, doi:10.1002/mrm.24436.
[33]  Zhong, J.; Mills, P.H.; Hitchens, T.K.; Ahrens, E.T. Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn. Reson. Med. 2013, 69, 1683–1690, doi:10.1002/mrm.24414.
[34]  Kadayakkara, D.K.; Janjic, J.M.; Pusateri, L.K.; Young, W.B.; Ahrens, E.T. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magn. Reson. Med. 2010, 64, 1252–1259, doi:10.1002/mrm.22506.
[35]  Srinivas, M.; Heerschap, A.; Ahrens, E.T.; Figdor, C.G.; de Vries, I.J. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol. 2010, 28, 363–370, doi:10.1016/j.tibtech.2010.04.002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413