全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2013 

Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

DOI: 10.3390/bios3020201

Keywords: surface plasmon resonance, quantum semiconductor emitters, nanophotonic devices, hyperspectral imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW) microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm) with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP) and through the surface plasmon resonance (SPR) effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10 ?6 RIU.

References

[1]  Lee, S.J.; Lee, S.Y. Micro total analysis system (micro-TAS) in biotechnology. Appl. Microbiol. Biotechnol. 2004, 64, 289–299, doi:10.1007/s00253-003-1515-0.
[2]  Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer-Verlag: Berlin, Germany, 1988.
[3]  Schasfoort, R.B.M.; Tudos, A.J. Handbook of Surface Plasmon Resonance; RSC Publication: Cambridge, UK, 2008.
[4]  Spangler, B.D.; Wilkinson, E.A.; Murphy, J.T.; Tyler, B.J. Comparison of the Spreeta (R) surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin. Anal. Chim Acta 2001, 444, 149–161, doi:10.1016/S0003-2670(01)01156-4.
[5]  Marchesini, G.R.; Koopal, K.; Meulenberg, E.; Haasnoot, W.; Irth, H. Spreeta-based biosensor assays for endocrine disruptors. Biosens. Bioelectron. 2007, 22, 1908–1915, doi:10.1016/j.bios.2006.08.005.
[6]  Lepage, D.; Dubowski, J.J. Surface plasmon assisted photoluminescence in GaAs-AlGaAs quantum well microstructures. Appl. Phys. Lett. 2007, 91, 163106, doi:10.1063/1.2798253.
[7]  Lepage, D.; Dubowski, J.J. Surface plasmon effects induced by uncollimated emission of semiconductor microstructures. Opt. Express 2009, 17, 10411–10418, doi:10.1364/OE.17.010411.
[8]  Lepage, D.; Jimenez, A.; Carrier, D.; Beauvais, J.; Dubowski, J.J. Hyperspectral imaging of diffracted surface plasmons. Opt. Express 2010, 18, 27327–27335.
[9]  Lepage, D.; Jimenez, A.; Beauvais, J.; Dubowski, J.J. Real-time detection of influenza A virus using semiconductor nanoplasmonics. Light Sci. Appl. 2013, 2, e62, doi:10.1038/lsa.2013.18.
[10]  Glytsis, E.N.; Gaylord, T.K. Rigorous 3-D coupled wave diffraction analysis of multiple superposed gratings in anisotropic media. Appl. Opt. 1989, 28, 2401–2421, doi:10.1364/AO.28.002401.
[11]  Li, L.F. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors. J. Opt. Pure Appl. Opt. 2003, 5, 345–355, doi:10.1088/1464-4258/5/4/307.
[12]  Schuster, T.; Ruoff, J.; Kerwien, N.; Rafler, S.; Osten, W. Normal vector method for convergence improvement using the RCWA for crossed gratings. J. Opt. Soc. Am. A 2007, 24, 2880–2890, doi:10.1364/JOSAA.24.002880.
[13]  Lepage, D.; Jimenez, A.; Beauvais, J.; Dubowski, J.J. Conic hyperspectral dispersion mapping applied to semiconductor plasmonics. Light Sci. Appl. 2012, 1, e28, doi:10.1038/lsa.2012.28.
[14]  NanoSPR website. Available online: http://www.nanoSPR.com (accessed on 27 May 2013).
[15]  Lepage, D.; Carrier, D.; Jimenez, A.; Beauvais, J.; Dubowski, J.J. Plasmonic propagations distances for interferometric surface plasmon resonance biosensing. Nanoscale Res. Lett. 2011, 6, 388, doi:10.1186/1556-276X-6-388.
[16]  Jimenez, A.; Lepage, D.; Beauvais, J.; Dubowski, J.J. Study of surface morphology and refractive index of dielectric and metallic films used for the fabrication of monolithically integrated surface plasmon resonance biosensing devices. Microelectron. Eng. 2012, 93, 91–94, doi:10.1016/j.mee.2011.10.016.
[17]  Tencer, M.; Charbonneau, R.; Lahoud, N.; Berini, P. AFM study of BSA adlayers on Au stripes. Appl. Surf. Sci. 2007, 253, 9209–9214, doi:10.1016/j.apsusc.2007.05.079.
[18]  Azzam, R.M.A.; Rigby, P.G.; Krueger, J.A. Kinetics of protein adsorption and immunological reactions at a liquid/solid interface by ellipsometry. Phys. Med. Biol. 1977, 22, 422–430.
[19]  Ioseliani, O.R. Focus on Eye Research; Nova Science Publishers: New York, NY, USA, 2005.
[20]  Barer, R.; Tkaczyk, S. Refractive index of concentrated protein solutions. Nature 1954, 173, 821–822, doi:10.1038/173821b0.
[21]  Akimoto, T.; Sasaki, S.; Ikebukuro, K.; Karube, I. Refractive-index and thickness sensitivity in surface plasmon resonance spectroscopy. Appl. Opt. 1999, 38, 4058–4064, doi:10.1364/AO.38.004058.
[22]  Arwin, H. Optical propoerties of thin layers of bovin serum albumine, γ-globulin, and hemoglobulin. Appl. Spectrosc. 1986, 40, 313–318, doi:10.1366/0003702864509204.
[23]  Lousinian, S. Optical properties of proteins and protein adsorption study. Microelectron. Eng. 2007, 84, 479–485, doi:10.1016/j.mee.2006.10.082.
[24]  Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160, doi:10.1016/j.bios.2007.07.001.
[25]  Huang, Y.H.; Ho, H.P.; Kong, S.K.; Kabashin, A.V. Phase-sensitive surface plasmon resonance biosensors: Methodology, instrumentation and applications. Ann. Phys.-Berlin. 2012, 524, 637–662, doi:10.1002/andp.201200203.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133