全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Olfactory Hallucinations without Clinical Motor Activity: A Comparison of Unirhinal with Birhinal Phantosmia

DOI: 10.3390/brainsci3041483

Keywords: phantosmia, hallucination, aura, olfaction, taste, phantageusia, epilepsy, Valsalva, GABA, brain plasticity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Olfactory hallucinations without subsequent myoclonic activity have not been well characterized or understood. Herein we describe, in a retrospective study, two major forms of olfactory hallucinations labeled phantosmias: one, unirhinal, the other, birhinal. To describe these disorders we performed several procedures to elucidate similarities and differences between these processes. From 1272, patients evaluated for taste and smell dysfunction at The Taste and Smell Clinic, Washington, DC with clinical history, neurological and otolaryngological examinations, evaluations of taste and smell function, EEG and neuroradiological studies 40 exhibited cyclic unirhinal phantosmia (CUP) usually without hyposmia whereas 88 exhibited non-cyclic birhinal phantosmia with associated symptomology (BPAS) with hyposmia. Patients with CUP developed phantosmia spontaneously or after laughing, coughing or shouting initially with spontaneous inhibition and subsequently with Valsalva maneuvers, sleep or nasal water inhalation; they had frequent EEG changes usually ipsilateral sharp waves. Patients with BPAS developed phantosmia secondary to several clinical events usually after hyposmia onset with few EEG changes; their phantosmia could not be initiated or inhibited by any physiological maneuver. CUP is uncommonly encountered and represents a newly defined clinical syndrome. BPAS is commonly encountered, has been observed previously but has not been clearly defined. Mechanisms responsible for phantosmia in each group were related to decreased gamma-aminobutyric acid (GABA) activity in specific brain regions. Treatment which activated brain GABA inhibited phantosmia in both groups.

References

[1]  Aretaeus. The Extant Works of Aretaeus: The Cappadocian; Adams, F., Ed.; Longwood Press: Boston, MA, USA, 1978.
[2]  Kühn, C.G. Claudii Galeni Opera Omnia; Georg Olms: Hildesheim, Germany, 1964.
[3]  Manford, M.; Shorvon, S.D. Prolonged sensory or visceral symptoms: An under-diagnosed form of non-convulsive focal (simple partial) status epilepticus. J. Neurol. Neurosurg. Psychiatry 1992, 55, 714–716, doi:10.1136/jnnp.55.8.714.
[4]  Gove, P.B. Webster’s Seventh New Collegiate Dictionary, 3rd ed. ed.; G & C Merriam: Springfield, MA, USA, 1967.
[5]  Esquirol, E. Des Maladies Mentales Considérées sous les Rapports Médical, Hygiénique et Médico-Légal, (1838); Hafner: New York, NY, USA. Reprinted 1965.
[6]  Jackson, J.H. Subjective sensations of smell with epileptiform attacks. R. Lond. Ophthalmic Hosp. Rep. 1866, 5, 304.
[7]  Jackson, J.H. Clinical remarks on the occasional occurrence of subjective sensations of smell in patients who are liable to epileptiform seizures or who have symptoms of mental derangement and in others. Lancet 1866, 1, 659–660.
[8]  Jackson, J.H. Subjective sensation of smell with epileptiform seizures. Lancet 1871, 1, 376–377.
[9]  Lennox, W.G.; Cobb, S. Aura in epilepsy: A statistical review of 1,359 cases. Arch. Neurol. Psychiatry 1933, 30, 374–387, doi:10.1001/archneurpsyc.1933.02240140138007.
[10]  Penfield, W.; Kristiansen, K. Epileptic Seizure Patterns; CC Thomas: Springfield, IL, USA, 1951.
[11]  Gastaut, H.; Broughton, R.J. Epileptic Seizures: Clinical and Electrographic Features, Diagnosis and Treatment; CC Thomas: Springfield, IL, USA, 1972; pp. 124–134.
[12]  Daly, D.D. Ictal clinical manifestations of complex partial seizures. Adv. Neurol. 1975, 11, 57–83. 1217573
[13]  Weiser, H.G. Electroclinical Features of Psychomotor Seizure; Butterworths: London, UK, 1983.
[14]  Currie, S.; Heathfield, W.G.; Henson, R.A.; Scott, D.F. Clinical course and prognosis of temporal lobe epilepsy. A survey of 666 patients. Brain 1971, 194, 173–190.
[15]  Commission on Classification and Terminology of the International League against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981, 22, 489–501, doi:10.1111/j.1528-1157.1981.tb06159.x.
[16]  Gupta, A.K.; Jeavons, P.M.; Hughes, R.C.; Covanis, A. Aura in temporal lobe epilepsy: Clinical and electroencephalographic correlation. J. Neurol. Neurosurg. Psychiatry 1983, 46, 1079–1083, doi:10.1136/jnnp.46.12.1079.
[17]  Gowers, W.R. Epilepsy and Other Chronic Convulsive Diseases: Their Causes, Symptoms and Treatment; William Wood: London, UK, 1885; Volume 1.
[18]  Jasper, H.H.; Rasmussen, T. Studies of clinical and electrical responses to deep temporal stimulation in man with some considerations of functional anatomy. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1958, 36, 316–334. 13527791
[19]  Falconer, M.A.; Cavanagh, J.B. Clinico-pathological considerations of temporal lobe epilepsy due to small focal lesions. Brain 1959, 82, 483–484, doi:10.1093/brain/82.4.483.
[20]  Van Buren, J.M. The abdominal aura: A study of abdominal sensations occurring in epilepsy and produced by depth stimulation. Electroencephalogr. Clin. Neurophysiol. 1963, 15, 1–19, doi:10.1016/0013-4694(63)90035-X.
[21]  Penfield, W.; Jasper, H.H. Epilepsy and the Functional Anatomy of the Human Brain; Little Brown: Boston, MA, USA, 1954.
[22]  Mullan, S.; Penfield, W. Illusions of comparative interpretation and emotion; production by epileptic discharge and by electrical stimulation in the temporal cortex. Arch. Neurol. Psychiatry 1959, 81, 269–284.
[23]  Penfield, W.; Perot, P. The brain’s record of auditory and visual experience. A final summary and discussion. Brain 1963, 86, 596–696.
[24]  Gloor, P.; Olivier, A.; Quesney, L.; Andermann, F.; Horowitz, S. The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann. Neurol. 1982, 12, 129–144, doi:10.1002/ana.410120203.
[25]  Sperling, M.R.; Lieb, J.P.; Engel, J.; Crandall, P.H. Prognostic significance of independent auras in temporal lobe seizures. Epilepsia 1989, 30, 322–331, doi:10.1111/j.1528-1157.1989.tb05305.x.
[26]  Palmini, A.; Gloor, P. The localizing value of auras in partial seizures: A prospective and retrospective study. Neurology 1992, 42, 801–808, doi:10.1212/WNL.42.4.801.
[27]  Taylor, D.C.; Lochery, M. Temporal lobe epilepsy: Origin and significance of simple and complex auras. J. Neurol. Neurosurg. Psychiatry 1987, 50, 673–681, doi:10.1136/jnnp.50.6.673.
[28]  Williamson, P.D.; Wieser, H.G.; Delgado-Escueta, A.V. Clinical Characteristics of Partial Seizures. In Surgical Treatment of the Epilepsies; Engel, J., Ed.; Raven Press: New York, NY, USA, 1987; pp. 101–120.
[29]  Ajmone-Marsan, C. Commentary: Clinical Characteristics of Partial Seizures. In Surgical Treatment of the Epilepsies; Engel, J., Ed.; Raven Press: New York, NY, USA, 1987; pp. 121–127.
[30]  Janati, A.; Nowack, W.J.; Dorsey, S.; Chesser, M.Z. Correlative study of interictal electroencephalogram and aura in complex partial seizures. Epilepsia 1990, 31, 41–46, doi:10.1111/j.1528-1157.1990.tb05358.x.
[31]  Sperling, M.R.; O’Connor, M.J. Auras and subclinical seizures: Characteristics and prognostic significance. Ann. Neurol. 1990, 28, 320–328, doi:10.1002/ana.410280304.
[32]  King, D.W.; Marsan, C.A. Clinical features and ictal patterns in epileptic patients with EEG temporal lobe foci. Ann. Neurol. 1977, 2, 138–147, doi:10.1002/ana.410020209.
[33]  Hausser-Hauw, C.; Bancaud, J. Gustatory hallucinations in epileptic seizures. Electrophysiological, clinical and anatomical correlates. Brain 1987, 110, 339–359, doi:10.1093/brain/110.2.339.
[34]  Carter, J.L. Visual, somatosensory, olfactory and gustatory hallucinations. Psychiatr. Clin. N. Am. 1992, 15, 347–358.
[35]  Henkin, R.I.; Levy, L.M.; Lin, C.S. Taste and smell phantoms revealed by brain functional MRI (fMRI). J. Comput. Assist. Tomogr. 2000, 24, 106–123, doi:10.1097/00004728-200001000-00022.
[36]  Levy, L.M.; Henkin, R.I. Brain gamma-aminobutyric acid levels are decreased in patients with phantageusia and phantosmia demonstrated by magnetic resonance spectroscopy. J. Comput. Assist. Tomogr. 2004, 28, 721–727, doi:10.1097/00004728-200411000-00001.
[37]  Jackson, J.H; Beevor, C.E. Case of tumor of the right temporo-sphenoidal lobe, bearing on the localization of the sense of smell and on the interpretation of a particular variety of epilepsy. Brain 1890, 12, 346–357, doi:10.1093/brain/12.3.346.
[38]  Jackson, J.H.; Stewart, P. Epileptic attacks with a warning of a crude sensation of smell and the intellectual aura (Dreamy state) in a patient who had symptoms pointing to gross organic disease of the right temporo-sphenoidal lobe. Brain 1899, 22, 534–549, doi:10.1093/brain/22.4.534.
[39]  Jackson, J.H. Lectures on the Diagnosis of Epilepsy. In On Epilepsy and Epileptiform Convulsions, Selected Writings of John Hughlings Jackson; Taylor, J., Ed.; Hodder and Stoughton: London, UK, 1931–1932; Volume 1, pp. 276–307.
[40]  Gloor, P. Contributions of Electroencephalography and Electrocorticography to the Neurosurgical Treatment of the Epilepsies. In Neurosurgical Management of the Epilepsies; Purpura, D.P., Penry, J.K., Walter, R.D., Eds.; Raven Press: New York, NY, USA, 1975; Volume 8, pp. 59–105.
[41]  Gloor, P. The EEG and Differential Diagnosis of Epilepsy. In Current Concepts in Clinical Neurophysiology; van Duijn, H., Donker, D.N., van Huffelen, A.C., Eds.; Trio: The Hague, The Netherlands, 1977; pp. 9–21.
[42]  Devinsky, O.; Kelley, K.; Porter, R.J.; Theodore, W.H. Clinical and electroencephalographic features of simple partial seizures. Neurology 1988, 38, 1347–1352, doi:10.1212/WNL.38.9.1347. 3137487
[43]  Lieb, J.P.; Walsh, G.O.; Babb, T.L.; Walter, R.D.; Crandall, P.H. A comparison of EEG seizure patterns recorded with surface and depth electrodes in patients with temporal lobe epilepsy. Epilepsia 1976, 17, 137–160, doi:10.1111/j.1528-1157.1976.tb03392.x.
[44]  Klass, D.W.; Espinosa, R.E.; Fischer-Williams, M. Analysis of concurrent electroencephalographic and clinical events occurring sequentially during partial seizures. Electroencephalogr. Clin. Neurophysiol. 1973, 34, 728.
[45]  Theodore, W.H.; Porter, R.J.; Penry, J.K. Complex partial seizures: Clinical characteristics and differential diagnosis. Neurology 1983, 33, 1115–1121. 6684245
[46]  Broglin, D.; Delgado-Escueta, A.V.; Walsh, G.O.; Bancaud, J.; Chauvel, P. Clinical approach to the patient with seizures and epilepsies of frontal origin. Adv. Neurol. 1992, 57, 59–88. 1543084
[47]  Fried, I.; Spencer, D.D.; Spenser, S.S. The anatomy of epileptic auras: Focal pathology and surgical outcome. J. Neurosurg. 1995, 83, 60–66, doi:10.3171/jns.1995.83.1.0060.
[48]  Rose, F.C. Migraine. In Encyclopedia of Neuroscience, 2nd ed.; Adelman, G., Smith, B.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1181–1182.
[49]  Wolberg, F.L.; Ziegler, D.K. Olfactory hallucination in migraine. Arch. Neurol. 1982, 39, 382, doi:10.1001/archneur.1982.00510180060017.
[50]  Crosley, C.J.; Dhamoon, S. Migrainous olfactory aura in a family. Arch. Neurol. 1983, 40, 459, doi:10.1001/archneur.1983.04050070089029.
[51]  Diamond, S.; Freitag, F.G.; Prager, J.; Gandi, S. Olfactory aura in migraine. N. Engl. J. Med. 1985, 312, 1390–1391. 3990743
[52]  Daniel, C.; Donnet, A. Migrainous complex hallucinations in a 17-year-old adolescent. Headache 2011, 51, 999–1001, doi:10.1111/j.1526-4610.2010.01823.x.
[53]  Coleman, E.R.; Grosberg, B.M.; Robbins, M.S. Olfactory hallucinations in primary headache disorders: Case series and literature review. Cephalalgia 2011, 31, 1477–1489, doi:10.1177/0333102411423315.
[54]  Demarquay, G.; Créac’h, C.; Peyron, R. Olfactory hallucinations in primary headache disorders: Case series and literature review. A comment. Cephalalgia 2012, 32, 583–584, doi:10.1177/0333102411436125.
[55]  Benemei, S.; Eleonora, R.; Geppetti, P. Trigeminal nerve and phantosmia in primary headaches. Cephalalgia 2012, 32, 85, doi:10.1177/0333102411434169.
[56]  Gardner, K. The genetic basis of migraine: How much do we know? Can. J. Neurol. Sci. 1999, 26, S37–S43. 10563232
[57]  Ducros, A. Genetics of migraine. Pathol. Biol. (Paris) 2000, 48, 658–662. (in French).
[58]  Khalil, N.M.; Legg, N.J.; Anderson, D.J. Long term decline of P100 amplitude in migraine with aura. J. Neurol. Neurosurg. Psychiatry 2000, 69, 507–511, doi:10.1136/jnnp.69.4.507.
[59]  Baron, J.C. The pathophysiology of migraine: Insights from functional neuroimaging. Rev. Neurol. (Paris) 2000, 156 (Suppl. 4), S15–S23. (in French).
[60]  Aurora, S.K.; Welch, K.M. Migraine: Imaging the aura. Curr. Opin. Neurol. 2000, 13, 273–276, doi:10.1097/00019052-200006000-00007.
[61]  James, M.F.; Smith, J.M.; Boniface, S.J.; Huang, C.L.; Leslie, R.A. Cortical spreading depression and migraine: New insights from imaging? Trends Neurosci. 2001, 24, 266–271, doi:10.1016/S0166-2236(00)01793-8. 11311378
[62]  Dreier, J.P.; Kleeberg, J.; Petzold, G.; Priller, J.; Windmüller, O.; Orzechowski, H.D.; Lindauer, U.; Heinemann, U.; Einh?upl, K.M.; Dirnagl, U. Endothelin-1 potently induces Le?o’s cortical spreading depression in vivo in the rat: A model for an endothelin trigger of migrainous aura? Brain 2002, 125, 102–112, doi:10.1093/brain/awf007. 11834596
[63]  Vonderheid-Guth, B.; Todorova, A.; Wedekind, W.; Dimpfel, W. Evidence for neuronal dysfunction in migraine: Concurrence between specific EEG findings and clinical drug response-a retrospective analysis. Eur. J. Med. Res. 2000, 5, 473–483. 11121368
[64]  Eggers, A.E. New neural theory of migraine. Med. Hypotheses 2001, 56, 360–363, doi:10.1054/mehy.2000.1214.
[65]  Gowers, W.R. A Manual of Diseases of the Nervous System; P. Blakiston: Philadelphia, PA, USA, 1892; Volume 2.
[66]  Goadsby, P.J. Migraine, aura and cortical spreading depression: Why are we still talking about it? Ann. Neurol. 2001, 49, 4–6, doi:10.1002/1531-8249(200101)49:1<4::AID-ANA3>3.0.CO;2-W.
[67]  Olesen, J.; Larsen, B.; Lauritzen, M. Focal hyperemia followed by spreading oligema and impaired activation of rCBF in classic migraine. Ann. Neurol. 1981, 9, 344–352, doi:10.1002/ana.410090406.
[68]  Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D. Migraine-current understanding and treatment. N. Engl. J. Med. 2002, 346, 257–270, doi:10.1056/NEJMra010917.
[69]  Woods, R.P.; Iacoboni, M.; Mazziota, J.C. Brief report: Bilateral spreading cerebral hypoperfusion during spontaneous migraine headache. N. Engl. J. Med. 1994, 331, 1689–1692, doi:10.1056/NEJM199412223312505. 7969360
[70]  Sanchez del Rio, M.; Bakker, J.; Wu, O.; Agosti, R.; Mitsikostas, D.D.; Ostergaard, L.; Wells, W.A.; Rosen, B.R.; Sorensen, G.; Moskowitz, M.A.; et al. Perfusion weighted imaging during migraine: Spontaneous visual aura and headache. Cephalalgia 1999, 19, 701–707, doi:10.1046/j.1468-2982.1999.019008701.x. 10570723
[71]  Le?o, A.A. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944, 7, 359–390.
[72]  Acharya, V.; Acharya, J.; Lüders, H. Olfactory epileptic auras. Neurology 1998, 51, 56–61, doi:10.1212/WNL.51.1.56.
[73]  Halgren, E.; Walter, R.D.; Cherlow, D.G.; Crandall, P.H. Mental phenomena evoked by electrical stimulation of human hippocampal formation and amygdala. Brain 1978, 101, 93–117.
[74]  Herpin, T.H. Des Accès Incomplets d’Epilepsie; Bailler: Paris, France, 1867.
[75]  Howe, J.G.; Gibson, J.D. Uncinate seizures and tumors, a myth reexamined. Ann. Neurol. 1982, 12, 227, doi:10.1002/ana.410120238.
[76]  Kopala, L.C.; Good, K.P.; Honer, W.G. Olfactory hallucinations and olfactory identification ability in patients with schizophrenia and other psychiatric disorders. Schizophr. Res. 1994, 12, 205–211, doi:10.1016/0920-9964(94)90030-2.
[77]  Stevenson, R.J.; Langdon, R.; McGuire, J. Olfactory hallucinations in schizophrenia and schizoaffective disorder: A phenomenological survey. Psychiatry Res. 2011, 185, 321–327, doi:10.1016/j.psychres.2010.07.032.
[78]  Lewandowski, K.E.; DePaola, J.; Camsari, G.B.; Cohen, B.M.; ?ngür, D. Tactile, olfactory, and gustatory hallucinations in psychotic disorders: A descriptive study. Ann. Acad. Med. Singapore 2009, 38, 383–385. 19521636
[79]  Arguedas, D.; Langdon, R.; Stevenson, R. Neuropsychological characteristics associated with olfactory hallucinations in schizophrenia. J. Int. Neuropsychol. Soc. 2012, 18, 799–808, doi:10.1017/S1355617712000471.
[80]  St. John Bullen, F. Olfactory hallucinations in the insane. J. Ment. Sci. 1899, 45, 513–533.
[81]  Kraepelin, E. Dementia Praecox and Paraphrenia (1919); Krieger Publishing: Huntington, NY, USA. Reprinted 1971.
[82]  Bromberg, W.; Schilder, P. Olfactory imaginations and olfactory hallucinations. Arch. Neurol. Psychiatry 1934, 32, 467–492, doi:10.1001/archneurpsyc.1934.02250090002001.
[83]  Davidson, G.M. Concerning hallucinations of smell. Psychiatr. Q. 1938, 12, 253–270, doi:10.1007/BF01566189.
[84]  Mueser, K.T.; Bellack, A.S.; Brady, E.U. Hallucinations in schizophrenia. Acta Psychiatr. Scand. 1990, 82, 26–29, doi:10.1111/j.1600-0447.1990.tb01350.x.
[85]  Assad, G. Hallucinations in Clinical Psychiatry: A Guide for Mental Health Professionals; Brunner/Mazel: New York, NY, USA, 1990; pp. 70–85.
[86]  Croy, I.; Yarina, S.; Hummel, T. Research Letter: Enhanced parosmia and phantosmia in patients with severe depression. Psychol. Med. 2013, 24, 1–5.
[87]  Pryse-Phillips, W. An olfactory reference syndrome. Acta Psychiatr. Scand. 1971, 47, 484–509, doi:10.1111/j.1600-0447.1971.tb03705.x.
[88]  Munro, A.; Chmara, J. Monosymptomatic hypochondriacal psychosis: A diagnostic checklist based on 50 cases of the disorder. Can. J. Psychiatry 1982, 27, 374–376. 7116276
[89]  Bishop, E.R., Jr. An olfactory reference syndrome-monosymptomatic hypochondriasis. J. Clin. Psychiatry 1980, 41, 57–59. 7440526
[90]  Begum, M.; McKenna, P.J. Olfactory reference syndrome: A systematic review of the world literature. Psychol. Med. 2011, 41, 453–461, doi:10.1017/S0033291710001091.
[91]  Muffatti, R.; Scarone, S.; Gambini, O. An olfactory reference syndrome successfully treated by aripiprazole augmentation of antidepressant therapy. Cogn. Behav. Neurol. 2008, 21, 258–260, doi:10.1097/WNN.0b013e318185e6bd.
[92]  Furstenburg, A.C.; Crosby, E.; Farrior, B. Neurologic lesions which influence the sense of smell. Arch. Otolaryngol. 1943, 48, 529–530.
[93]  Allen, I.M. Spontaneous olfactory and gustatory phenomena with and without organic lesions of the brain. N. Z. Med. J. 1944, 43, 165–168.
[94]  Mulder, D.W.; Daly, D. Psychiatric symptoms associated with lesions of temporal lobe. J. Am. Med. Assoc. 1952, 150, 173–176, doi:10.1001/jama.1952.03680030005003.
[95]  Hollander, E.; Neville, D.; Frenkel, M.; Josephson, S.; Liebowitz, M.R. Body dysmorphic disorder. Diagnostic issues and related disorders. Psychosomatics 1992, 33, 156–165, doi:10.1016/S0033-3182(92)71991-4. 1557480
[96]  Harriman, P.L. A case of olfactory hallucinations in a hypochrondriacal prisoner. J. Abnorm. Soc. Psychol. 1934, 29, 457–458.
[97]  Mizuo, T.; Ando, M. A case of olfactory hallucinations with adult enuresis. Hinyokika Kiyo 1988, 34, 178–180. (in Japanese). 3376799
[98]  Kellner, C.H.; Bachman, D.L. Olfactory hallucination after intravenous caffeine. Am. J. Psychiatry 1992, 149, 422. 1536300
[99]  Koinigsburg, H.W.; Pollak, C.P.; Fine, J. Olfactory hallucinations after the infusion of caffeine during sleep. Am. J. Psychiatry 1993, 150, 1897–1898. 8238651
[100]  Kroemer, S.; Kawohl, W. Gustatory and olfactory hallucinations under therapeutic dosing of bupropion. J. Neuropsychiatry Clin. Neurosci. 2011, 23, E53, doi:10.1176/appi.neuropsych.23.2.E53.
[101]  Schechter, P.J.; Henkin, R.I. Abnormalities of taste and smell after head trauma. J. Neurol. Neurosurg. Psychiatry 1974, 37, 802–810, doi:10.1136/jnnp.37.7.802.
[102]  Henkin, R.I. Evaluation and Treatment of Human Olfactory Dysfunction. In Otolaryngology; English, G.M., Ed.; Lippincott: Philadelphia, PA, USA, 1993; Volume 2, pp. 1–86.
[103]  Henkin, R.I. Drug induced taste and smell disorders: Incidence, mechanisms and management related primarily to treatment of sensory receptor dysfunction. Drug Saf. 1994, 11, 318–377, doi:10.2165/00002018-199411050-00004.
[104]  Levy, L.M.; Henkin, R.I. Physiologically initiated and inhibited phantosmia: Cyclic unirhinal, episodic, recurrent phantosmia revealed by brain fMRI. J. Comput. Assist. Tomogr. 2000, 24, 501–520, doi:10.1097/00004728-200007000-00001.
[105]  Henkin, R.I.; Levy, L.M.; Fordyce, A.; Henkin, R.I.; Levy, L.M.; Fordyce, A. Taste and smell function in chronic disease: A review of clinical and biochemical evaluation of taste and smell dysfunction in over 5000 patients at The Taste and Smell Clinic in Washington, DC. Am. J. Otolaryngol. 2013, 34, 477–489, doi:10.1016/j.amjoto.2013.04.006.
[106]  Lin, S.H.; Chu, S.T.; Yuan, B.C.; Shu, C.H. Survey of the frequency of olfactory dysfunction in Taiwan. J. Chin. Med. Assoc. 2009, 72, 68–71, doi:10.1016/S1726-4901(09)70025-5.
[107]  Hong, S.C.; Holbrook, E.H.; Leopold, D.A.; Hummel, T. Distorted olfactory perception: A systematic review. Acta Otolaryngol. 2012, 132, S27–S31, doi:10.3109/00016489.2012.659759.
[108]  Chen, C.; Shih, Y.H.; Yen, D.J.; Lirng, J.F.; Guo, Y.C.; Yu, H.Y.; Yiu, C.H. Olfactory auras in patients with temporal lobe epilepsy. Epilepsia 2003, 44, 257–260, doi:10.1046/j.1528-1157.2003.25902.x.
[109]  Mizobuchi, M.; Ito, N.; Tanaka, C.; Sako, K.; Sumi, Y.; Sasaki, T. Unidirectional olfactory hallucination associated with ipsilateral unruptured intracranial aneurysm. Epilepsia 1999, 40, 516–519, doi:10.1111/j.1528-1157.1999.tb00751.x.
[110]  ye, E.; Arendts, G. Intracerebral haemorrhage presenting as olfactory hallucinations. Emerg. Med. (Fremantle) 2002, 14, 447–449, doi:10.1046/j.1442-2026.2002.00385.x.
[111]  Capampangan, D.J.; Hoerth, M.T.; Drazkowski, J.F.; Lipinski, C.A. Olfactory and gustatory hallucinations presenting as partial status epilepticus because of glioblastoma multiforme. Ann. Emerg. Med. 2010, 56, 374–377, doi:10.1016/j.annemergmed.2010.02.020.
[112]  Kumar, G.; Juhász, C.; Sood, S.; Asano, E. Olfactory hallucinations elicited by electrical stimulation via subdural electrodes: Effects of direct stimulation of olfactory bulb and tract. Epilepsy Behav. 2012, 24, 264–268, doi:10.1016/j.yebeh.2012.03.027.
[113]  DiFabio, R.; Casali, C.; Giugni, E.; Pierelli, F. Olfactory hallucinations as a manifestation of hidden rhinosinusitis. J. Clin. Neurosci. 2009, 16, 1353–1355, doi:10.1016/j.jocn.2008.12.030.
[114]  Landis, BN.; Burkhard, P.R. Phantosmias and Parkinson disease. Arch. Neurol. 2008, 65, 1237–1239, doi:10.1001/archneur.65.9.1237.
[115]  Bannier, S.; Berdagué, J.L.; Rieu, I.; de Chazeron, I.; Marques, A.; Derost, P.; Ulla, M.; Llorca, P.M.; Durif, F. Prevalence and phenomenology of olfactory hallucinations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1019–1021, doi:10.1136/jnnp-2012-302414.
[116]  Tousi, B.; Frankel, M. Olfactory and visual hallucinations in Parksinson’s disease. Parkinsonism Relat. Disord. 2004, 10, 253–254, doi:10.1016/j.parkreldis.2004.01.003.
[117]  Brundin, P.; Petit, G. Use of Rasagiline for the Treatment of Olfactory Dysfunction. U.S. Patent Application PCT/US2011/045574, 27 July 2011.
[118]  Yang, J.C.; Khakoo, Y.; Lightner, D.D.; Wolden, S.L. Phantosmia during radiation therapy: A report of 2 cases. J. Child Neurol. 2013, 28, 791–794, doi:10.1177/0883073812450616.
[119]  Leopold, D.A.; Loehrl, T.A.; Schwob, J.E. Long-term follow-up of surgically treated phantosmia. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 642–647, doi:10.1001/archotol.128.6.642.
[120]  Markert, J.M.; Hartshorn, D.O.; Farhat, S.M. Paroxysmal bilateral dysosmia treated by resection of the olfactory bulbs. Surg. Neurol. 1993, 40, 160–163, doi:10.1016/0090-3019(93)90129-O.
[121]  Landis, B.N.; Croy, I.; Haehner, A. Long lasting phantosmia treated with venlafaxine. Neurocase 2012, 18, 112–114, doi:10.1080/13554794.2011.568497.
[122]  Johnson, J.; Bourgeois, J.A.; Quanbeck, C. Treatment of olfactory hallucinations with topiramate. J. Clin. Psychopharmacol. 2006, 26, 340–341, doi:10.1097/01.jcp.0000218406.10362.27.
[123]  Landis, B.N.; Reden, J.; Haehner, A. Idiopathic phantosmia: Outcome and clinical significance. ORL J. Otorhinolaryngol. Relat. Spec. 2010, 72, 252–255, doi:10.1159/000317024.
[124]  Brown, R.J.; Bouska, J.F.; Frow, A.; Kirkby, A.; Baker, G.A.; Kemp, S.; Burness, C.; Reuber, M. Emotional dysregulation, alexithymia, and attachment in psychogenic nonepileptic seizures. Epilepsy Behav. 2013, 29, 178–183, doi:10.1016/j.yebeh.2013.07.019.
[125]  Xue, Q.; Wang, Z.Y.; Xiong, X.C.; Tian, C.Y.; Wang, Y.P.; Xu, P. Altered brain connectivity in patients with psychogenic non-epileptic seizures: A scalp electroencephalography study. J. Int. Med. Res. 2013, 41, 1682–1690, doi:10.1177/0300060513496170.
[126]  Henkin, R.I. Report on a survey on smell in the US. Olfactory Rev. 1987, 1, 1–8.
[127]  Ikui, A.; Ikeda, M.; Tahara, I.; Ito, I.; Endo, S. Clinical Aspects of Phantogeusia. In Olfaction and Taste XI; Kurihara, K., Suzuki, N., Ogawa, H., Eds.; Springer-Verlag: Tokyo, Japan, 1994; p. 580.
[128]  Henkin, R.I. Disorders of taste and smell. JAMA 1971, 218, 1946, doi:10.1001/jama.1971.03190260060028.
[129]  Anderson, J. On sensory epilepsy. A case of basal cerebral tumour affecting the left tempero-sphenoidal lobe, and giving rise to a paroxysmal taste-sensation and dreamy state. Brain 1886, 9, 385–395, doi:10.1093/brain/9.3.385.
[130]  Henkin, R.I. Concepts of Therapy in Taste and Smell Dysfunction: Repair of Sensory Receptor Function as Primary Treatment. In Olfaction and Taste XI; Kurihara, K., Suzuki, N., Ogawa, H., Eds.; Springer-Verlag: Tokyo, Japan, 1994; pp. 568–573.
[131]  Beeman, C.E. A case of epilepsy with olfactory aura from a tumour in the tempero-sphenoidal lobe. Br. Med. J. 1889, 1, 414–416.
[132]  Clarke, J.M. Epileptic attacks preceded by subjective auditory and taste sensations, probably due to tumour of the left tempero-sphenoidal lobe. Lancet 1900, 1, 1119–1120, doi:10.1016/S0140-6736(01)96642-5.
[133]  Friedman, H. Taste hallucinations in cerebral tumor. Wien Klin Rundsch. 1909, 47, 787–790.
[134]  Feré, C. Note sur les sensations subjectives de l’odorat chez un épileptique. Compt. Rendus Soc. Biol. 1896, 48, 1036–1038.
[135]  Henkin, R.I. Phantageusia. In Difficult Diagnosis II; Taylor, R.B., Ed.; W.B. Saunders: Philadelphia, PA, USA, 1992; pp. 348–356.
[136]  Toulouse, E.; Vaschide, N. Influence des crises épileptiques sur l’olfaction. Compt. Rendus Soc.Biol. 1899, 51, 742–744.
[137]  Gastaut, H.; Roger, J.; Giove, C. Troubles de l’olfaction, de la gustation et de l’appetit chez les épileptiques psychomoteurs. Ann. Med. Psychol. 1955, 46, 177–182.
[138]  Bartlet, J.E. A case of organized visual hallucinations in an old man with cataract and their relation to the phenomena of the phantom limb. Brain 1951, 74, 363–373, doi:10.1093/brain/74.3.363.
[139]  Podoll, K.; Osterheider, M.; Noth, J. The Charles Bonnet syndrome. Fortschr. Neurol. Psychiatr. 1989, 57, 43–60. (in German), doi:10.1055/s-2007-1000744. 2651256
[140]  Pliskin, N.H.; Kiolbasa, T.A.; Towle, V.L.; Pankow, L.; Ernest, J.; Noronha, A; Luchins, D.J. Charles Bonnet syndrome: An early marker for dementia? J. Am. Geriatr. Soc. 1996, 44, 1055–1061. 8790230
[141]  Teunisse, R.J.; Cruysberg, J.R.; Verbeek, A.; Zitman, F.G. The Charles Bonnet syndrome: A large prospective study in the Netherlands. Br. J. Psychiatry 1995, 166, 254–257, doi:10.1192/bjp.166.2.254.
[142]  Teunisse, R.J.; Cruysberg, J.R.; Hoefnagels, W.H.; Verbeek, A.L.; Zitman, F.G. Visual hallucinations in psychologically normal people: Charles Bonnet’s syndrome. Lancet 1996, 347, 794–797, doi:10.1016/S0140-6736(96)90869-7.
[143]  Teunisse, R.J.; Cruysberg, J.R.; Hoefnagels, W.H.; van’t Hof, M.A.; Verbeek, A.L.; Zitman, F.G. Risk indicators for the Charles Bonnet Syndrome. J. Nerv. Ment. Dis. 1998, 186, 190–192, doi:10.1097/00005053-199803000-00009.
[144]  De Ajuriaguerra, J.; LeGenne, J. Unilateral auditory and visual hallucinations in a hard of hearing blind man with deafness in the right ear. Ann. Med. Psychol. (Paris) 1946, 104, 246–251.
[145]  Hécaen, H.; Ropert, R. Auditory hallucinations in the course of neurologic syndromes. Ann. Med. Psychol. (Paris) 1959, 117, 257–306.
[146]  Lennox, G. Auditory hallucinations due to ear disease. Br. J. Psychiatry 1988, 153, 713–714, doi:10.1192/bjp.153.5.713b.
[147]  Toulouse, E. Unilateral hallucinations. Gazette H?pitaux 1892, 65, 609–618.
[148]  Chamorro, A.; Sacco, R.L.; Ciecierski, K.; Binder, J.R.; Tatemichi, T.K.; Mohr, J.P. Visual hemineglect and hemihallucinations in a patient with a subcortical infarction. Neurology 1990, 40, 1463–1464, doi:10.1212/WNL.40.9.1463.
[149]  Bergman, P.S. Unilateral auditory hallucinations. Trans. Am. Neurol. Assoc. 1965, 90, 226–227. 5857747
[150]  Hauptman, B.; Glick, I.D. Auditory hallucinations with imipramine. J. Hillside Hosp. 1968, 17, 32–34.
[151]  Gordon, A.G. Unilateral auditory hallucinations. Br. J. Psychiatry 1988, 153, 263–264. 3255449
[152]  Almeida, O.P.; Forstl, H.; Howard, R.; David, A.S. Unilateral auditory hallucinations. Br. J. Psychiatry 1993, 162, 262–264, doi:10.1192/bjp.162.2.262.
[153]  Bremer, J. New onset auditory hallucinations after right temporal lobectomy. Am. J. Psychiatry 1996, 153, 442–443. 8610841
[154]  Gordon, A.G. Unilateral auditory hallucinations: Ear or brain? J. Neurol. Neurosurg. Psychiatry 1997, 63, 814–815, doi:10.1136/jnnp.63.6.814.
[155]  Potolicchio, S.J.; Lossing, J.H.; O’Doherty, D.S.; Henkin, R.I. Partial seizures with simple psychosensory symptomatology (cyclic phantosmia): A new and distinct seizure disorder. Clin. Res. 1986, 34, 635A.
[156]  Levy, L.M.; Hutter, A.; Schroder, J.; Lin, C.S.; Schellinger, D.; Henkin, R.I. Brain localization of cyclic unilateral olfactory phantoms by functional magnetic resonance imaging (fMRI) by treatment with valproic acid and thioridazine. J. Invest. Med. 1997, 45, 238A.
[157]  Henkin, R.I.; Larson, A.L.; Powell, R.D. Hypogeusia, dysgeusia, hyposmia and dysosmia following influenza-like infection. Ann. Otol. Rhinol. Laryngol. 1975, 84, 672–682. 1190677
[158]  Church, J.A.; Bauer, H.; Bellanti, J.A.; Satterly, R.A.; Henkin, R.I. Hyposmia associated with atopy. Ann. Allergy 1978, 40, 105–109. 629425
[159]  Henkin, R.I. Hyposmia and hypogeusia due to nonallergic rhinitis. J. Am. Med. Assoc. 1973, 225, 1256.
[160]  Henkin, R.I.; Velicu, I.; Schmidt, L. An open-label controlled trial of theophylline for treatment of patients with hyposmia. Am. J. Med. Sci. 2009, 337, 396–406, doi:10.1097/MAJ.0b013e3181914a97. 19359985
[161]  Henkin, R.I.; Schultz, M.; Minnick-Poppe, L. Intranasal theophylline treatment of patients with hyposmia and hypogeusia: A pilot study. Arch. Otolaryngol. Head Neck Surg. 2012, 138, 1064–1070, doi:10.1001/2013.jamaoto.342.
[162]  Levy, L.M.; Henkin, R.I.; Lin, C.S.; Hutter, A.; Schellinger, D. Odor memory induces brain activation as measured by functional MRI. J. Comput. Assist. Tomogr. 1999, 23, 487–498, doi:10.1097/00004728-199907000-00001. 10433273
[163]  Levy, L.M.; Henkin, R.I.; Lin, C.S.; Finley, A.; Schellinger, D. Taste memory induces brain activation as revealed by functional MRI. J. Comput. Assist. Tomogr. 1999, 23, 499–505, doi:10.1097/00004728-199907000-00002.
[164]  Levy, L.M.; Hallett, M. Impaired brain GABA in focal dystonia. Ann. Neurol. 2002, 51, 93–101, doi:10.1002/ana.10073.
[165]  Henkin, R.I.; Potolicchio, S.J.; Levy, L.M. Improvement in smell and taste dysfunction after repetitive transcranial magnetic stimulation. Am. J. Otolaryngol. 2011, 32, 38–46, doi:10.1016/j.amjoto.2009.10.001.
[166]  Henkin, R.I.; Potolicchio, S.J.; Levy, L.M. Rapid changes in taste and smell function following transcranial magnetic stimulation (TCMS) in humans: Relationships to CNS plasticity. FASEB J. 2002, 16, A875.
[167]  Henkin, R.I.; Potolicchio, S.J.; Levy, L.M.; Moharram, R.; Velicu, I.; Martin, B.M. Carbonic anhydrase (CA) I, II and VI, blood plasma, erythrocyte and saliva zinc and copper increase after repetitive transcranial magnetic stimulation. Am. J. Med. Sci. 2010, 339, 249–257, doi:10.1097/MAJ.0b013e3181cda0e3.
[168]  Herron, J. Neuropsychology of Left-Handedness; Academic Press: New York, NY, USA, 1980.
[169]  McManus, I.C.; Bryden, M.C. The Genetics of Handedness, Cerebral Dominance and Lateralization. In Handbook of Neuropsychology; Rapin, I., Segalowitz, S.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; Volume 6, pp. 115–144.
[170]  Katzman, G.L.; Dagher, A.P.; Patronas, N.J. Incidental findings on brain magnetic resonance imaging from 1000 asymptomatic volunteers. JAMA 1999, 282, 36–39, doi:10.1001/jama.282.1.36.
[171]  Maly, P.V.; Sundgren, P.C. Changes in paranasal sinus abnormalities found incidentally on MR. Neuroradiology 1995, 37, 471–474, doi:10.1007/BF00600097.
[172]  Patel, K.; Chvada, S.V.; Violaris, N.; Pahor, A.L. Incidental paranasal sinus inflammatory changes in a British population. J. Laryngol. Otol. 1996, 110, 649–651. 8759538
[173]  Iwabuchi, Y.; Hanamure, Y.; Hirota, J.; Ohyama, M. Clinical significance of asymptomatic sinus abnormalities on magnetic resonance imaging. Arch. Otolaryngol. Head Neck Surg. 1997, 123, 602–604, doi:10.1001/archotol.1997.01900060044007.
[174]  Kurz, A.; Sessler, D.I.; Lenhardt, R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N. Engl. J. Med. 1996, 334, 1209–1215, doi:10.1056/NEJM199605093341901.
[175]  Henkin, R.I.; Levy, L.M. Lateralization of brain activation to imagination and smell of odors using functional magnetic resonance imaging (fMRI): Left hemispheric localization of pleasant and right hemispheric localization of unpleasant odors. J. Comput. Assist. Tomogr. 2001, 25, 493–514, doi:10.1097/00004728-200107000-00001.
[176]  Greif, R.; Ak?a, O.; Horn, E.P.; Kurz, A.; Sessler, D.I.; Outcomes Research Group. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N. Engl. J. Med, 2000, 342, 161–167, doi:10.1056/NEJM200001203420303.
[177]  Gottrup, F.; Firmin, R.; Rabkin, J.; Halliday, B.J.; Hunt, T.K. Directly measured tissue oxygen tension and arterial oxygen tension assess tissue perfusion. Crit. Care Med. 1987, 15, 1030–1036, doi:10.1097/00003246-198711000-00008. 3677745
[178]  Gottrup, F. Prevention of surgical-wound infections. N. Engl. J. Med. 2000, 342, 202–204, doi:10.1056/NEJM200001203420310.
[179]  Levy, L.M.; Henkin, R.I.; Lin, C.S.; Hutter, A.; Schellinger, D. Increased brain activation in response to odors in patients with hyposmia after theophylline treatment demonstrated by fMRI. J. Comput. Assist. Tomogr. 1998, 22, 760–770, doi:10.1097/00004728-199809000-00019.
[180]  Sheehy, M.P.; Marsden, C.D. Writers’ cramp-a focal dystonia. Brain 1982, 105, 461–480, doi:10.1093/brain/105.3.461.
[181]  Berardelli, A.; Rothwell, J.C.; Hallett, M.; Thompson, P.D.; Manfredi, M.; Marsden, C.D. The pathophysiology of primary dystonia. Brain 1998, 121, 1195–1212, doi:10.1093/brain/121.7.1195.
[182]  Byl, N.N.; McKenzie, A.; Nagarajan, S.S. Differences in somatosensory hand organization in a healthy flutist and a flutist with focal hand dystonia: A case report. J. Hand Ther. 2000, 13, 302–309, doi:10.1016/S0894-1130(00)80022-8.
[183]  Tinazzi, M.; Priori, A.; Bertolasi, L.; Frasson, E.; Mauguière, F.; Fiasche, A. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 2000, 123, 42–50, doi:10.1093/brain/123.1.42.
[184]  Priori, A.; Pesenti, A.; Cappellari, A.; Scarlato, G.; Barbieri, S. Limb immobilization for the treatment of focal occupational dystonia. Neurology 2001, 57, 405–409, doi:10.1212/WNL.57.3.405. 11502904
[185]  Pascual-Leone, A. The brain that plays music and is changed by it. Ann. N. Y. Acad. Sci. 2001, 930, 315–329, doi:10.1111/j.1749-6632.2001.tb05741.x.
[186]  Matsumura, M.; Sawaguchi, T.; Oishi, T.; Ueki, K.; Kubota, K. Behavioral deficits induced by local injection of bicuculline and muscimol into the primate motor and premotor cortex. J. Neurophysiol. 1991, 65, 1542–1553. 1875261
[187]  L?scher, W.; H?rstermann, D. Abnormalities in amino acid neurotransmitters in discrete brain regions of genetically dystonic hamsters. J. Neurochem. 1992, 59, 689–694, doi:10.1111/j.1471-4159.1992.tb09423.x. 1352802
[188]  De Yebenes, J.G.; Vazquez, A.; Martinez, A.; Mena, M.A.; del Rio, R.M.; de Felipe, C.; del Rio, J. Biochemical findings in symptomatic dystonias. Adv. Neurol. 1988, 50, 167–175. 3400491
[189]  Richter, A.; L?schmann, P.A.; L?scher, W. The novel antiepileptic drug, lamotrigine, exerts prodystonic effects in a mutant hamster model of generalized dystonia. Eur. J. Pharmacol. 1994, 264, 345–351, doi:10.1016/0014-2999(94)00493-5. 7698175
[190]  Messer, A. Amino acid changes in the mouse mutant dystonia musculorum similar to those in Friedreich’s ataxia. Can. J. Neurol. Sci. 1982, 9, 185–188. 6125255
[191]  Leopold, D.A.; Schwob, J.E.; Youngentob, S.L.; Hornung, D.E.; Wright, H.N.; Mozell, M.M. Successful treatment of phantosmia with preservation of olfaction. Arch. Otolarngol. Head Neck Surg. 1991, 117, 1402–1406, doi:10.1001/archotol.1991.01870240094016.
[192]  Pujol, J.; Roset-Llobet, J.; Rosinés-Cubells, D.; Deus, J.; Narberhaus, B.; Valls-Solé, J.; Capdevila, A.; Pascual-Leone, A. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. Neuroimage 2000, 12, 257–267, doi:10.1006/nimg.2000.0615.
[193]  Tanaka, C. Gamma-aminobutyric acid in peripheral tissues. Life Sci. 1985, 37, 2221–2235, doi:10.1016/0024-3205(85)90013-X.
[194]  Pertwee, R.G.; Wickens, A.P. Enhancement by chloridiazepoxide of catalepsy induced in rats by intravenous or intrapallidal injections of enantiomeric cannabinoids. Neuropharmacology 1991, 30, 237–244, doi:10.1016/0028-3908(91)90150-A.
[195]  Romero, J.; Garcia-Palomero, E.; Fernández-Ruiz, J.J.; Ramos, J.A. Involvement of GABA(B) receptors in the motor inhibition produced by agonists of brain cannabinoid receptors. Behav. Pharmacol. 1996, 7, 299–302, doi:10.1097/00008877-199605000-00011.
[196]  Coull, M.A.; Johnston, A.T.; Pertree, R.G.; Davies, S.N. Action of delta-9-tetrahydrocannabinal on GABA(A) receptor mediated responses in a grease-gap recording preparation of the rat hippocampal slice. Neuropharmacology 1997, 36, 1387–1392, doi:10.1016/S0028-3908(97)00110-X.
[197]  Garcia-Gil, L.; de Miguel, R.; Romero, J.; Perez, A.; Ramos, J.A.; Fernández-Ruiz, J.J. Perinatal delta-9-tetrahydrocannabinol exposure augmented the magnitude of motor inhibition caused by GABA(B), but not GABA(A), receptor agonists in adult rats. Neurotoxicol. Teratol. 1999, 21, 277–283, doi:10.1016/S0892-0362(98)00058-0.
[198]  Gale, K. Chronic blockade of dopamine receptors by antischizophrenic drugs enhances GABA binding in substantia nigra. Nature 1980, 283, 569–570, doi:10.1038/283569a0.
[199]  Lawrence, L.J.; Geen, K.W.; Yamamura, H.I. GABA Involvement in Benzodiazepine Receptor Modulation of the Chloride Ionophore. In Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties; Olsen, R.W., Venter, C.J., Eds.; A.R. Liss: New York, NY, USA, 1986; Volume 5, pp. 225–240, 445.
[200]  Ey, H. Traité des Hallucinations; Masson: Paris, France, 1973; Volume 1, pp. 157–158.
[201]  Mantegazza, P. On the Hygienic and Medicinal Virtues of Coca. In The Coca Leaf and Cocaine Papers; Andrews, G., Solomon, D., Eds.; Harcourt Brace Jovanovich: New York, NY, USA, 1975; pp. 38–42.
[202]  Siegel, R.K. Cocaine hallucinations. Am. J. Psychiatry 1978, 135, 309–314. 626219
[203]  Dittrich, A.; Bickel, P.; Sch?pf, J.; Zimmer, D. Comparison of altered states of consciousness induced by the hallucinogens (?)-delta9-trans-tetrahydrocannabinol (delta9-THC) and N,N-dimethyltryptamine (DMT) (author’s transl). Arch. Psychiatr. Nervenkr. 1976, 223, 77–87. (in German), doi:10.1007/BF00367455. 1070948
[204]  Koukkou, M.; Lehmann, D. Human EEG spectra before and during cannibis hallucinations. Biol. Psychiatry 1976, 11, 663–677. 999986
[205]  Sorg, B.A.; Guminski, B.J.; Hooks, M.S.; Kalivas, P.W. Cocaine alters glutamic acid decarboxylase differentially in the nucleus accumbens core and shell. Brain Res. Mol. Brain Res. 1995, 29, 381–386, doi:10.1016/0169-328X(94)00281-I. 7609627
[206]  Peris, J.; Jung, B.J.; Resnick, A.; Walker, P.; Malakhova, O.; Bokrand, Y.; Wielbo, D. Antisense inhibition of striatal GABAA receptor proteins decreases GABA-stimulated chloride uptake and increases cocaine sensitivity in rats. Brain Res. Mol. Brain Res. 1998, 57, 310–320, doi:10.1016/S0169-328X(98)00102-8. 9675429
[207]  Peris, J. Repeated cocaine injections decrease the function of striatal gamma-aminobutyric acid (A) receptors. J. Pharmacol. Exp. Ther. 1996, 276, 1002–1008. 8786528
[208]  Ye, J.H.; Liu, P.L.; Wu, W.H.; McArdle, J.J. Cocaine depresses GABAA current of hippocampal neurons. Brain Res. 1997, 770, 169–175, doi:10.1016/S0006-8993(97)00782-8. 9372216
[209]  Giorgetti, M.; Javaid, J.I.; Davis, J.M.; Costa, E.; Guidotti, A.; Appel, S.B.; Brodie, M.S. Imidazenil, a positive allosteric GABAA receptor modulator, inhibits the effects of cocaine on locomotor activity and extracellular dopamine in the nucleus accumbens shell without tolerance liability. J. Pharmacol. Exp. Ther. 1998, 287, 58–66. 9765322
[210]  Isbell, H.; Gorodetzsky, C.W.; Jasinski, D.; Claussen, U.; von Spulak, F.; Korte, F. Effects of (?)-delta-9-trans-tetrahydrocannabinol in man. Psychopharmacologia 1967, 11, 184–188, doi:10.1007/BF00401256. 4871478
[211]  Berrios, G.E. Tactile hallucinations: Conceptual and historical aspects. J. Neurol. Neurosurg. Psychiatry 1982, 45, 285–293, doi:10.1136/jnnp.45.4.285. 7042917
[212]  Bekavac, I.; Waterhouse, B.D. Systemically administered cocaine selectively enhances long-latency responses of rat barrel field cortical neurons to vibrissae stimulation. J. Pharmacol. Exp. Ther. 1995, 272, 333–342. 7815349
[213]  Ziemann, U.; Hallett, M.; Cohen, L.G. Mechanisms of deafferentation-induced plasticity in human motor cortex. J. Neurosci. 1998, 18, 7000–7007. 9712668
[214]  Yamanaka, T.; Him, A.; Cameron, S.A.; Dutia, M.B. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurons after unilateral labyrinthectomy. J. Physiol. 2000, 523, 413–424, doi:10.1111/j.1469-7793.2000.t01-1-00413.x. 10699085
[215]  Donaghue, J.P.; Hess, G.; Sanes, J.N. Substrates and Mechanisms for Learning in Motor Cortex. In The Acquisition of Motor Behavior in Vertebrates; Bloedel, J.R., Ebner, T.J., Wise, S.P., Eds.; MIT Press: Cambridge, MA, USA, 1996; pp. 363–386.
[216]  Huntley, G.W. Correlation between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex. Cereb. Cortex 1997, 7, 143–156, doi:10.1093/cercor/7.2.143. 9087822
[217]  Capaday, C.; Richardson, M.P.; Rothwell, J.C.; Brooks, D.J. Long-term changes of GABAergic function in the sensorimotor cortex of amputees. A combined magnetic stimulation and 11C-flumazenil PET study. Exp. Brain Res. 2000, 133, 552–556, doi:10.1007/s002210000477. 10985690
[218]  Hendry, S.H.; Jones, E.G. Reduction in number of immunostained GABAergic neurons in deprived-eye dominance columns of monkey area 17. Nature 1986, 320, 750–753, doi:10.1038/320750a0. 3703001
[219]  Hendry, S.H.; Jones, E.G. Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys. Neuron 1988, 1, 701–712, doi:10.1016/0896-6273(88)90169-9. 3272185
[220]  Rosier, A.M.; Arckens, L.; Demeulemeester, H.; Orban, G.A.; Eysel, U.T.; Wu, Y.J.; Vandesande, F. Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. J. Comp. Neurol. 1995, 359, 476–489, doi:10.1002/cne.903590309. 7499542
[221]  Welker, E.; Soriano, E.; van der Loss, H. Plasticity in the barrel cortex of the adult mouse: Effects of peripheral deprivation on GAD-immunoreactivity. Exp. Brain Res. 1989, 74, 441–452. 2707320
[222]  Cameron, D.L.; Williams, J.T. Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J. Neurosci. 1994, 14, 6763–6767. 7965077
[223]  Dewey, S.L.; Chaurasia, C.S.; Chen, C.E.; Volkow, N.D.; Clarkson, F.A.; Porter, S.P.; Straughter-Moore, R.M.; Alexoff, D.L.; Tedeschi, D.; Russo, N.B.; et al. ABAergic attenuation of cocaine-induced dopamine release and locomotor activity. Synapse 1997, 25, 393–398, doi:10.1002/(SICI)1098-2396(199704)25:4<393::AID-SYN11>3.0.CO;2-W. 9097399
[224]  Morgan, A.E.; Dewey, S.L. Effects of pharmacologic increases in brain GABA levels on cocaine-induced changes in extracellular dopamine. Synapse 1998, 28, 60–65, doi:10.1002/(SICI)1098-2396(199801)28:1<60::AID-SYN7>3.0.CO;2-A. 9414018
[225]  Shoaib, M.; Swanner, L.S.; Beyer, C.E.; Goldberg, S.R.; Schindler, C.W. The GABAB agonist baclofen modifies cocaine self-administration in rats. Behav. Pharmacol. 1998, 9, 195–206. 9832934
[226]  Suzuki, T.; Abe, S.; Yamaguchi, M.; Baba, A.; Hori, T.; Shiraishi, H.; Ito, T. Effects of cocaine administration on receptor binding and subunits mRNA of GABA(A)-benzodiazepine receptor complexes. Synapse 2000, 38, 198–215, doi:10.1002/1098-2396(200011)38:2<198::AID-SYN11>3.0.CO;2-K. 11018794
[227]  Lilly, S.M.; Tietz, E.I. Chronic cocaine differentially affects diazepam’s anxiolytic and anticonvulsant actions. Relationship to GABA(A) receptor subunit expression. Brain Res. 2000, 882, 139–148, doi:10.1016/S0006-8993(00)02858-4. 11056193
[228]  Abel, M.S.; Kohli, N. GABA-transaminase antisense oligodeoxynucleotide modulates cocaine- and pentylenetetrazol-induced seizures in mice. Metab. Brain Dis. 1999, 14, 253–263, doi:10.1023/A:1020737125843. 10850552
[229]  De Leon, K.R.; Todtenkopf, M.S.; Stellar, J.R. An examination of glutamate decarboxylase (65) immunoreactive puncta with respect to rat ventral pallidum neurons after repeated cocaine administration. Neurosci. Lett. 2000, 284, 69–72, doi:10.1016/S0304-3940(00)00973-3. 10771164
[230]  Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain. Neurotoxicology 1989, 10, 491–500. 2576303
[231]  Bonci, A.; Williams, J.T. A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 1996, 16, 631–639, doi:10.1016/S0896-6273(00)80082-3. 8785060
[232]  Neugebauer, V.; Zinebi, F.; Russell, R.; Gallagher, J.P.; Shinnick-Gallagher, P. Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J. Neurophysiol. 2000, 84, 759–770. 10938303
[233]  Messer, A.; Gordon, D. Changes in whole tissue biosynthesis of gamma-amino butyric acid (GABA) in basal ganglia of the dystonia (dtAlb) mouse. Life Sci. 1979, 25, 2217–2221, doi:10.1016/0024-3205(79)90095-X. 542100
[234]  Richter, A.; L?scher, W. Gabapentin decreases the severity of dystonia at low doses in a genetic animal model of paroxysmal dystonic choreoathetosis. Eur. J. Pharmacol. 1999, 369, 335–338, doi:10.1016/S0014-2999(99)00104-1. 10225372
[235]  Weber, O.M.; Verhagen, A.; Duc, D.O.; Meier, D.; Leenders, K.L.; Boesiger, P. Effects of vigabatrin intake on brain GABA activity as monitored by spectrally edited magnetic resonance spectroscopy and positron emission tomography. Magn. Reson. Imaging 1999, 17, 417–425, doi:10.1016/S0730-725X(98)00184-2. 10195585
[236]  Greene, P. Baclofen in the treatment of dystonia. Clin. Neuropharmacol. 1992, 15, 276–278, doi:10.1097/00002826-199208000-00002. 1516073
[237]  Petroff, O.A.; Rothman, D.L.; Behar, K.L.; Mattson, R.H. Low brain GABA level is associated with poor seizure control. Ann. Neurol. 1996, 40, 908–911, doi:10.1002/ana.410400613. 9007096
[238]  Siebner, H.R.; Tormos, J.M.; Ceballos-Baumann, A.O.; Auer, C.; Catala, M.D.; Conrad, B.; Pascual-Leone, A. Low frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 1999, 52, 529–537, doi:10.1212/WNL.52.3.529. 10025782
[239]  Pascual-Leone, A.; Valls-Sole, J.; Wassermann, E.M.; Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994, 117, 847–858, doi:10.1093/brain/117.4.847. 7922470
[240]  Hoshiyama, M.; Kakige, R. Shortening of the cortical silent period following transcranial magnetic brain stimulation during an experimental paradign for generating contingent negative variation (CNV). Clin. Neurophysiol. 1999, 110, 1394–1398, doi:10.1016/S1388-2457(99)00110-8. 10454275
[241]  Sommer, M.; Tergau, F.; Wischer, S.; Reimers, C.D.; Beuche, W.; Paulus, W. Riluzole does not have an acute effect on motor thresholds and the intracortical excitability in amyotrophic lateral sclerosis. J. Neurol. 1999, 246, 22–26, doi:10.1007/BF03161086.
[242]  Ben-Shacher, D.; Gazawi, H.; Riboyad-Levin, J.; Klein, E. Chronic repetitive transcranial magnetic stimulation alters beta adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res. 1999, 816, 78–83, doi:10.1016/S0006-8993(98)01119-6. 9878693
[243]  Wu, T.; Sommer, M.; Tergau, F.; Paulus, W. Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci. Lett. 2000, 287, 37–40, doi:10.1016/S0304-3940(00)01132-0. 10841985
[244]  Terao, Y.; Hayashi, H.; Shimizu, T.; Tanabe, H.; Hanajima, R.; Ugawa, Y. Altered motor cortical excitability to magnetic stimulation in a patient with a lesion in the globus pallidus. J. Neurol. Sci. 1995, 129, 175–178, doi:10.1016/0022-510X(94)00273-Q. 7608733
[245]  Siebner, H.R.; Dressmandt, J.; Auer, C.; Conrad, B. Continuous tracheal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 1998, 21, 1209–1212, doi:10.1002/(SICI)1097-4598(199809)21:9<1209::AID-MUS15>3.0.CO;2-M. 9703450
[246]  Hamilton, W.F.; Woodbury, R.A.; Harper, H.T., Jr. Physiologic relationships between intrathoracic, intraspinal and arterial pressure. JAMA 1936, 107, 853–856, doi:10.1001/jama.1936.02770370017005.
[247]  Nishimura, R.A.; Tajik, A.J. The valsalva maneuver and response revisited. Mayo Clin. Prac. 1986, 61, 211–217, doi:10.1016/S0025-6196(12)61852-7.
[248]  Hamilton, W.F.; Woodbury, R.A.; Harper, H.T., Jr. Arterial, cerebrospinal and venous pressures in man during cough and strain. Am. J. Physiol. 1944, 141, 42–50.
[249]  Bellet, S. Essentials of Cardiac Arrhythmias: Diagnosis and Management; Saunders: Philadelphia, PA, USA, 1972; pp. 102–114.
[250]  Waxman, M.B.; Wald, R.W.; Finley, J.P.; Bonet, J.F.; Downar, E.; Sharma, A.D. Valsalva termination of ventricular tachycardia. Circulation 1980, 62, 843–851, doi:10.1161/01.CIR.62.4.843. 6773699
[251]  Levine, H.J.; McIntyre, K.M.; Glovsky, M.M. Relief of angina pectoris by Valsalva maneuver. N. Engl. J. Med. 1966, 275, 487–489, doi:10.1056/NEJM196609012750907. 5917943
[252]  Pepine, C.J.; Wiener, L. Clinical and hemodynamic responses to the Valsalva maneuver during angina pectoris (abstract). Circulation 1971, 44, 50.
[253]  Burcharth, F.; Bertheussen, K. The influence of posture, Valsalva maneuver and coughing on portal hypertension in cirrhosis. Scand. J. Clin. Lab. Invest. 1979, 39, 665–669, doi:10.3109/00365517909108872. 556537
[254]  Jankovic, G.M. Factor VIII response to a Valsalva manoeuvre. Br. J. Haematol. 1980, 46, 137–139. 6775676
[255]  Ogawa, S.; Lee, T.M.; Nayak, A.S.; Glynn, P. Oxygenation-sensitive sensory contrast in magnetic resonance image of rodent brain at high magnetic fields. Mag. Reson. Med. 1990, 14, 68–78, doi:10.1002/mrm.1910140108.
[256]  Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weiskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R.; et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679, doi:10.1073/pnas.89.12.5675. 1608978
[257]  Lempert, T.; Bauer, M.; Schmidt, D. Syncope: A videometric analysis of 56 episodes of transient cerebral hypoxia. Ann. Neurol. 1994, 36, 233–237, doi:10.1002/ana.410360217. 8053660
[258]  Duvoisin, R.C. Convulsive syncope induced by the Weber maneuver. Arch. Neurol. 1962, 7, 219–226, doi:10.1001/archneur.1962.04210030057008. 13888762
[259]  Whinnery, J.E.; Whinnery, A.M. Acceleration-induced loss of consciousness. A review of 500 episodes. Arch. Neurol. 1990, 47, 764–776, doi:10.1001/archneur.1990.00530070058012. 2357157
[260]  Harper, R.M.; Gozal, D.; Bandler, R.; Spriggs, D.; Lee, J.; Alger, J. Regional brain activation in humans during respiratory and blood pressure challenges. Clin. Exp. Pharmacol. Physiol. 1998, 25, 483–486, doi:10.1111/j.1440-1681.1998.tb02240.x. 9673830
[261]  Posse, S.; Olthoff, U.; Weckesser, M.; J?ncke-Müller-G?rtner, H.W.; Dager, S.R. Regional dynamic signal changes during controlled hyperventilation assessed with blood oxygen level-dependent functional MR imaging. Am. J. Neuroradiol. 1997, 18, 1763–1770. 9367329
[262]  Roberts, E. Gamma-Aminobutyric Acid (GABA). In Encyclopedia of Neuroscience; Adelman, G., Smith, B.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 745–749.
[263]  Morimoto, K.; Goddard, G.V. Kindling induced changes in EEG recorded during stimulation from the site of stimulation: Collapse of GABA-mediated inhibition and onset of rhythymic synchronous burst. Exp. Neurol. 1986, 94, 551–584.
[264]  Harris, J.K.; DeLorenzo, R.J. Epilepsy-A Molecular and Cellular Views. In Epilepsy: Current Approaches to Diagnosis and Treatment; Smith, D.B., Ed.; Raven Press: New York, NY, USA, 1990; pp. 227–237.
[265]  McNamara, J.O.; Bonhaus, D.W.; Shin, C.; Crain, B.J.; Gellman, R.L.; Giacchino, J.L. The kindling model of epilepsy, a critical review. CRC Crit. Rev. Clin. Neurobiol. 1985, 1, 341–391. 3915977
[266]  Tsura, N. Neuronal firing pattern following amygdaloid kindling in unrestrained rats. Epilepsia 1985, 26, 488–492, doi:10.1111/j.1528-1157.1985.tb05685.x. 4043019
[267]  Wasterlain, C.G.; Morin, A.M.; Fujikawa, D.G.; Bronstein, J.M. Chemical Kindling. In The Clinical Relevance of Kindling; Bolwig, T.G., Trimble, M.R., Eds.; J. Wiley & Sons: Chichester, UK, 1989; pp. 35–53.
[268]  Goddard, G.; McIntyre, D.; Leech, C.K. A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 1969, 25, 295–330, doi:10.1016/0014-4886(69)90128-9. 4981856
[269]  Goddard, G.V. The kindling model of epilepsy. Trends Neurosci. 1983, 6, 275–279, doi:10.1016/0166-2236(83)90118-2.
[270]  Morrell, F. Kindling and Synaptic Plasticity: The Legacy of Graham Goddard; Birkhauser: Boston, MA, USA, 1991.
[271]  Burchfiel, J.L.; Appelgate, C.D.; Samoriski, G.M.; Nierenberg, J. The Role of Rhinencephalic Networks in Early Stage Kindling. In Kindling 5 Advances in Behavioral Biology; Corcoran, M.E., Moshe, S.L., Eds.; Springer: New York, NY, USA, 1998; pp. 133–149.
[272]  Appelgate, C.D.; Burchfiel, J.L.; Ferland, R.J.; Nierenberg, J. The Role of Rhinencephalic Networks in the Late Stages of Kindling. In Kindling 5 Advances in Behavioral Biology; Corcoran, M.E., Moshe, S.L., Eds.; Springer: New York, NY, USA, 1998; pp. 151–165.
[273]  McIntyre, D.C.; Kelly, M.E. The Perirhinal Cortex and Kindled Motor Seizures. The Role of Rhinencephalic Networks in Early Stage Kindling. In Kindling 5 Advances in Behavioral Biology; Corcoran, M.E., Moshe, S.L., Eds.; Springer: New York, NY, USA, 1998; pp. 167–177.
[274]  Corcoran, M.E. Catecholamines and Kindling. In Kindling 2; Wada, J.A., Ed.; Raven Press: New York, NY, USA, 1981; pp. 87–104.
[275]  Vezzani, A.; Piwko, C.; Gobbi, M.; Schwarzer, C.; Sperk, G.; Hoyer, D. Somatostatin-and Neuropeptide y-Mediated Neurotransmission in Kindling Epileptogenesis. In Kindling 5 Advances in Behavioral Biology; Corcoran, M.E., Moshe, S.L., Eds.; Springer: New York, NY, USA, 1998; pp. 313–325.
[276]  Nillni, E.A.; Sevarino, K.A. The biology of prothyrotropin-releasing hormone-derived peptides. Endocr. Rev. 1999, 20, 599–648, doi:10.1210/er.20.5.599. 10529897
[277]  Holmes, G.L.; Weber, D.A. Effects of hypoxic-ischemic encephalopathies on kindling in the immature brain. Exp. Neurol. 1985, 90, 194–203, doi:10.1016/0014-4886(85)90052-4. 4043292
[278]  Moshe, S.L.; Albala, B.J. Perinatal hypoxia and subsequent development of seizures. Physiol. Behav. 1985, 35, 819–823, doi:10.1016/0031-9384(85)90418-4. 3936075
[279]  Vion-Dury, J.; Rougier, I.; LeGal LaSalle, G.; Bras, J.; Papy, J.J. Epileptogenesis caused by the kindling effect in diving at 3 ATA of air. J. Physiol. (Paris) 1985, 80, 32–37.
[280]  Vion-Dury, J.; LeGal LaSalle, G.; Rougier, I.; Papy, J.J. Effects of hyperbaric and hyperoxic conditions on amygdala kindled seizures in rat. Exp. Neurol. 1986, 92, 513–521, doi:10.1016/0014-4886(86)90293-1. 3709731
[281]  Frantseva, M.V.; Perez Velazquez, J.L.; Tsoraklidis, G.; Mendonca, A.J.; Adamchik, Y.; Mills, L.R.; Carlen, P.L.; Burnham, M.W. Oxidative stress is involved in seizure induced neurodegeneration in the kindling model of epilepsy. Neuroscience 2000, 97, 431–435, doi:10.1016/S0306-4522(00)00041-5. 10828526
[282]  Laffey, J.G.; Kavanaugh, B.P. Carbon dioxide and the critically ill—Too little of a good thing? Lancet 1999, 354, 1283–1286, doi:10.1016/S0140-6736(99)02388-0. 10520649
[283]  Lennox, W.G.; Gibbs, F.A.; Gibbs, E.L. The relationship in man of cerebral activity to blood flow and to blood constituents. J. Neurol. Psychiatry 1938, 1, 221–225.
[284]  Woodbury, D.M.; Rollins, L.T.; Cardner, M.O.; Hirschi, W.L.; Hogan, J.R.; Rallison, M.L.; Tanner, G.S.; Brodie, D.A. Effects of carbon dioxide on brain excitability and electrolytes. Am. J. Physiol. 1957, 192, 79–90.
[285]  Bird, J.M. Hyperventilation and Panic Attacks. In Epilepsy: A Comprehensive Textbook; Engel, J., Jr., Padley, T.A., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1997; Volume 3, pp. 2785–2790.
[286]  Meduna, L.J.; Gyarfas, K. Motor and sensory phenomena during CO2 inhalations. Dis. Nerv. Syst. 1949, 10, 3–7. 18105429
[287]  Gyarfas, K.; Pollack, G.H.; Stein, S.N. Central inhibitory effects of carbon dioxide, IV. Convulsive phenomena. Exp. Biol. Med. 1949, 70, 292–293, doi:10.3181/00379727-70-16903.
[288]  Leake, C.D.; Waters, R.M. The anesthetic properties of carbon dioxide. Anesth. Analg. 1929, 8, 17–19.
[289]  Seevers, M.H. The narcotic properties of carbon dioxide. N. Y. State J. Med. 1944, 44, 597–602.
[290]  Poulsen, T. Investigations into the anesthetic properties of carbon dioxide. Acta Pharmacol. Toxicol. 1952, 8, 30–46.
[291]  Gibbs, F.A.; Gibbs, E.L.; Lennox, W.G. Cerebral dysrhythmias of epilepsy. Arch. Neurol. Psychiatry 1938, 39, 298–314, doi:10.1001/archneurpsyc.1938.02270020088007.
[292]  Clowes, G.H.A., Jr.; Hopkins, A.L.; Simeone, F.A. A comparison of the physiological effects of hypercapnia and hypoxia in the production of cardiac arrest. Ann. Surg. 1955, 142, 446–460, doi:10.1097/00000658-195509000-00011. 13249341
[293]  Roth, M.; Harper, M. Temporal lobe epilepsy and the phobic anxiety-depersonalization syndrome. II. Practical and theoretical considerations. Compr. Psychiatry 1962, 3, 215–226, doi:10.1016/S0010-440X(62)80022-4. 14494394
[294]  Holmberg, G. The electroencephalogram during hypoxia and hyperventilation. Electroencephalogr. Clin. Neurophysiol. 1953, 5, 371–376, doi:10.1016/0013-4694(53)90078-9. 13068301
[295]  Wyke, B. Brain Function and Metabolic Disorders: The Neurological Effects of Changes in Hydrogen ion Concentration; Butterworths: London, UK, 1963.
[296]  Bellodi, L.; Perna, G.; Caldirola, D.; Arancio, C.; Bertani, A.; Di Bella, D. CO2 induced panic attacks: A twin study. Am. J. Psychiatry 1998, 155, 1184–1188. 9734540
[297]  Papp, L.A.; Marinez, J.M.; Kelin, D.F.; Coplan, J.D.; Norman, R.G.; Cole, R.; de Jesus, M.J.; Ross, D.; Goetz, R.; Gorman, J.M. Respiratory psychopathology of panic disorder: Three respiratory challenges in 98 subjects. Am. J. Psychiatry 1997, 154, 1557–1565. 9356564
[298]  Roy-Byrne, P.P.; Cowley, D.S. Search for pathophysiology of panic disorder. Lancet 1998, 352, 1646–1647, doi:10.1016/S0140-6736(05)61445-6. 9853434
[299]  Brown, E.B., Jr. Physiological effects of hyperventilation. Physiol. Rev. 1953, 33, 445–471. 13100065
[300]  Magarian, G.J.; Olney, R.K. Absence spells. Hyperventilation syndrome as a previously unrecognized cause. Am. J. Med. 1984, 76, 905–909, doi:10.1016/0002-9343(84)91007-6. 6426301
[301]  Stillman, A.E.; Hu, X.; Jerosch-Herold, M. Functional MRI of brain during breath holding at 4T. Magn. Reson. Imaging 1995, 13, 893–897, doi:10.1016/0730-725X(95)00037-H. 8544661
[302]  Kwong, K.K.; Wanke, I.; Donahue, K.M.; Dass, T.L.; Rosen, B.R. EPI imaging of global increase in brain MR signal with breath-hold preceded by breathing O2. Magn. Reson. Med. 1995, 33, 448–452, doi:10.1002/mrm.1910330322. 7760716
[303]  Moritz, C.H.; Meyerand, M.E.; Saykin, A.J. BOLD Contrast Response in Human Brain during Simple Breathhold Measured at 1.5 Tesla. In Proceedings of the ISMRM 6th Annual Meeting, Sydney, Australia, 18–24 April 1998; p. 1405.
[304]  Li, T.-Q.; Kastrup, A.; Takakashi, A.M.; Moseley, M.E. Functional MRI of human brain during breath holding by BOLD and FAIR techniques. Neuroimage 1999, 9, 243–249, doi:10.1006/nimg.1998.0399. 9927553
[305]  Tillakaratne, N.J.; Medina-Kaaawe, L.; Gibson, K.M. Gamma-aminobutyric acid (GABA) metabolism in mammalian neural and non-neural tissues. Comp. Biochem. Physiol. A Physiol. 1995, 112, 247–263, doi:10.1016/0300-9629(95)00099-2. 7584821
[306]  Lennox, W.G. Certain chemical and physiological conditions which may influence seizures. Assoc. Res. Nerv. Ment. Dis. Proc. 1931, 7, 475–490.
[307]  Lennox, W.G.; Behnke, A.R. Effect of increased oxygen pressure on the seizures of epilepsy. Arch. Neurol. Psychiatry 1936, 35, 782–788, doi:10.1001/archneurpsyc.1936.02260040090006.
[308]  Toman, J.E.P.; Davis, J.P. The effects of drugs upon the electrical activity of the brain. Pharm. Rev. 1949, 1, 425–491.
[309]  Swanson, A.G.; Stavney, L.S.; Stavney, F. Effects of blood pH and carbon dioxide on cerebral electrical activity. Neurology 1958, 8, 787–792, doi:10.1212/WNL.8.10.787. 13590387
[310]  Withrow, C.D. Systemic Carbon Dioxide Derangements. In Experimental Models of Epilepsy; Purpara, D.P., Penry, J.K., Woodburg, D.M., Tower, D.B., Water, R.D., Eds.; Raven Press: New York, NY, USA, 1972; pp. 478–494.
[311]  Kennealy, J.A.; Penovich, P.E.; Moore-Nease, S.E. EEG and spectral analysis in acute hyperventilation. Electroencephalogr. Clin. Neurophysiol. 1986, 63, 98–106, doi:10.1016/0013-4694(86)90002-7. 2417822
[312]  Gibbs, F.A.; Davis, H.; Lennox, W.G. The electroencephalogram in epilepsy and in condition of impaired consciousness. Arch. Neurol. Psychiatry 1935, 34, 1133–1148, doi:10.1001/archneurpsyc.1935.02250240002001.
[313]  Meyer, J.S.; Waltz, A.G. Arterial oxygen saturation and alveolar carbon dioxide during electroencephalography. I. Comparison of hyperventilation and induced hypoxia in subjects without brain disease. Arch. Neurol. 1960, 2, 631–643, doi:10.1001/archneur.1960.03840120037005.
[314]  Meyer, J.S.; Waltz, A.G. Arterial oxygen saturation and alveolar carbon dioxide during electroencephalography. II. Comparison of hyperventilation and induced hypoxia in subjects with epilepsy. Arch. Neurol. 1960, 2, 644–656, doi:10.1001/archneur.1960.03840120050006.
[315]  Sokoloff, L. The effects of carbon dioxide on the cerebral circulation. Anesthesiology 1960, 21, 664–673, doi:10.1097/00000542-196011000-00010.
[316]  Siesjo, B.K.; Messeter, K. Factors Determining Intracellular pH. In Ion Homeostasis of the Brain; Siesjo, B.K., Sprensen, S.C., Eds.; Munks Yaard: Copenhagen, The Netherlands, 1971; pp. 244–262.
[317]  Bode, H.; Puglia, E. Intra-individual variability of cerebral blood flow velocities in children while awake and asleep. Ultraschall Med. 1992, 13, 204–207, doi:10.1055/s-2007-1005311. 1439715
[318]  VonBulow, I.; Ebert, T.; Rockstroh, B.; Lutzenberger, W.; Canavan, A.; Birnbaumer, N. Effects of hyperventilation on EEG frequency and slow wave potentials in relation to an anticonvulsant and epilepsy. J. Neuropsychophysiol. 1989, 3, 147–154.
[319]  Rockstroh, B. Hyperventilation-induced EEG changes in humans and their modulation by anticonvulsant drug. Epilepsy Res. 1990, 7, 146–154, doi:10.1016/0920-1211(90)90100-A. 2289472
[320]  Plum, F.; Pasner, J.B.; Smith, W.W. Effect of hyperbaric-hyperoxic hyperventilation on blood, brain, and CSF lactate. Am. J. Physiol. 1968, 215, 1240–1244. 5687518
[321]  Stehling, M.K.; Schmitt, F.; Ladebeck, R. Echo-planar MR imaging of human brain oxygenation changes. J. Magn. Reson. Imaging 1993, 3, 471–474, doi:10.1002/jmri.1880030307. 8324305
[322]  Prisman, E.; Slessarev, M.; Han, J.; Poublanc, J.; Mardimae, A.; Crawley, A.; Fisher, J.; Mikulis, D. Comparison of the effects of independently-controlled end-tidal PCO2 and PO2 on blood oxygen level-dependent (BOLD) MRI. J. Magn. Reson. Imaging. 2008, 27, 185–191, doi:10.1002/jmri.21102. 18050321
[323]  Weckesser, M.; Posse, S.; Olthoff, U.; Kemna, L.; Drager, S.; Muller-Gartner, H.W. Functional imaging of the visual cortex with bold-contrast MRI: Hyperventilation decreases signal response. Magn. Res. Med. 1999, 41, 213–216, doi:10.1002/(SICI)1522-2594(199901)41:1<213::AID-MRM31>3.0.CO;2-S.
[324]  Riley, T.I. Epilepsy-or merely hyperventilation? Emerg. Med. 1982, 14, 162–167.
[325]  Chapman, A.G. Excitatory Neurotransmission and Antiepileptic Drug Development in Status Report. In Recent Advances Epilepsy; Pedley, T.A., Meldrum, B.S., Eds.; Raven Press: New York, NY, USA, 1995; Volume 6, pp. 1–21.
[326]  Chanutin, A.; Curnish, R.R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 1967, 121, 96–102, doi:10.1016/0003-9861(67)90013-6. 6035074
[327]  Brewer, G.J.; Eaton, J.W. Erythrocyte metabolism: Interaction with oxygen transport. Science 1971, 171, 1205–1211, doi:10.1126/science.171.3977.1205. 5545197
[328]  Woodson, R.D. Physiological significance of oxygen dissociation curve shift. Crit. Care Med. 1979, 7, 368–373, doi:10.1097/00003246-197909000-00004. 467087
[329]  Fried, R.; Rubin, S.R.; Carlton, R.M.; Fox, M.C. Behavioral control of intractable idiopathic seizures: 1. Self-regulation of end-tidal carbon dioxide. Psychosom. Med. 1984, 46, 315–331. 6435147
[330]  Pincus, J.H.; Tucker, G.J. Behavioral Neurology, 3rd ed. ed.; Oxford University Press: Oxford, UK, 1985; pp. 287–292.
[331]  Klein, D.F. Anxiety Reconceptualized. In Anxiety: New Research and Changing Concepts; Klein, D.F., Rakin, J.G., Eds.; Raven Press: New York, NY, USA, 1981; pp. 235–263.
[332]  Gorman, J.M.; Laebowitz, M.R.; Fryer, A.J.; Stein, J.A. A neuroanatomical hypothesis for panic disorder. Am. J. Psychiatry 1989, 146, 148–161. 2643361
[333]  Engel, G.L.; Ferriss, E.B.; Logan, M. Hyperventilation: Analysis of clinical symptomatology. Ann. Int. Med. 1947, 27, 683–704, doi:10.7326/0003-4819-27-5-683. 20271031
[334]  Hagberg, B.; Aicardi, J.; Dias, K.; Ramos, O. A progressive syndrome of autism, dementia, ataxia and loss of purposeful hand use in girls: Rett’s syndrome, a report of 35 cases. Am. Neurol. 1983, 14, 471–479, doi:10.1002/ana.410140412.
[335]  Bruno-Golden, P.; Holmes, G.L. Hyperventilation-induced seizures in mentally impaired children. Seizure 1993, 2, 229–233, doi:10.1016/S1059-1311(05)80132-3. 8162387
[336]  Ogunyemi, A.O.; Gomez, M.R.; Klass, D.W. Seizures induced by exercise. Neurology 1988, 38, 633–634, doi:10.1212/WNL.38.4.633. 3352923
[337]  Boyle, R. New Experiments Physico-Mechanical, Touching the Spring of Air and Its Effects, 2nd ed. ed.; H. Hall: Oxford, UK, 1660.
[338]  Poussouant, P.; Cadilhoc, J.; Pternitis, C.; Baldy-Moulinier, M. épilepsie-temporale et decharges ammoniques provoqueés per l’anoxie exprive. Rev. Neurol. 1967, 117, 65–70. 6063881
[339]  Poussouant, P.; Cadilhoc, J.; Pternitis, C.; Baldy-Moulinier, M. Temporal epilepsy and hippocampal discharges induced by oxyprivic anoxia. Electroencephalogr. Clin. Neurophysiol. 1967, 23, 379, doi:10.1016/0013-4694(67)90052-1. 4167773
[340]  Nelson, S.R.; Mantz, M.L. Brain energy reserve levels at the onset of convulsions in hypoxic mice. Life Sci. I 1971, 10, 901–907. 5570822
[341]  Tower, D.B. The Administration of Gamma-Aminobutyric Acid to Man: Systemic Effects and Anticonvulsant Actions. In Inhibition in the Nervous System and Gamma-Aminobutyric Acid; Roberts, E., Ed.; Pergamon Press: Oxford, UK, 1960; pp. 562–578.
[342]  Gellhorn, E.; Heymans, C. Differential action of anoxia, asphyxia and carbon dioxide on normal and convulsive potentials. J. Neurophysiol. 1948, 11, 261–273. 18865015
[343]  Wood, J.D. Systemic Oxygen Derangements. In Experimental Models of Epilepsy; Purpura, D.P., Penry, J.K., Woodbury, D.M., Tower, D.B., Walter, R.D., Eds.; Raven Press: New York, NY, USA, 1972; pp. 461–476.
[344]  Lovell, R.A.; Elliott, S.J.; Elliott, K.A. The gamma-aminobutyric acid and Factor I content of brain. J. Neurochem. 1963, 10, 479–488, doi:10.1111/j.1471-4159.1963.tb09850.x. 14045539
[345]  Wood, J.D.; Watson, W.J.; Ducker, A.J. Gamma-aminobutyric acid and oxygen poisoning. J. Neurochem. 1963, 10, 625–633, doi:10.1111/j.1471-4159.1963.tb08934.x. 14066624
[346]  Bert, P. La Pression Barométrique; Hitchcock, M.A., Hitchcock, F.A., Eds.; College Book Co: Columbus, OH, USA, 1943.
[347]  Stadie, W.C.; Riggs, B.C.; Haugaard, N. Oxygen poisoning. Am. J. Med. Sci. 1944, 207, 84–114, doi:10.1097/00000441-194401000-00009.
[348]  Bean, J.W. Effects of oxygen at increased pressure. Physiol. Rev. 1945, 25, 1–147.
[349]  Lambertson, C.J. Effects of Oxygen at High Partial Pressure. In Handbook of Physiology; Fenn, W.O., Rahn, H., Eds.; American Physiology Society: Washington, DC, USA, 1965; Volume 2, pp. 1027–1046.
[350]  Lambertson, C.J.; Ewing, J.H.; Kough, R.H.; Gould, R.; Stroud, M.W. Oxygen toxicity. J. Appl. Physiol. 1955–1956, 8, 255–263.
[351]  Wood, J.D. Development of a strain of rats with greater than normal susceptibility to oxygen poisoning. Can. J. Physiol. Pharmacol. 1966, 44, 259–265, doi:10.1139/y66-030. 5946562
[352]  Novotny, E.J., Jr.; Hyder, F.; Shevell, M.; Rothman, D.L. GABA changes with vigabatrin in the developing human brain. Epilepsia 1999, 40, 462–466, doi:10.1111/j.1528-1157.1999.tb00741.x. 10219272
[353]  Petroff, O.A.; Rothman, D.L.; Behar, K.L.; Collins, T.L.; Mattson, R.H. Human brain GABA levels rise rapidly after initiation of vigabatrin therapy. Neurology 1996, 47, 1567–1571, doi:10.1212/WNL.47.6.1567. 8960747
[354]  Webb, W.B. Slow Wave Sleep and Prior Wakefulness, Sleep Time, and Stability across Time. In Slow Wave Sleep: Physiological, Pathophysiological and Functional Aspects; Wauquier, A., Dugovic, C., Radulovacki, M., Eds.; Raven Press: New York, NY, USA, 1989; pp. 119–129.
[355]  Hobson, J.A. Sleep: Behavior and Cellular Mechanism. In Encyclopedia of Neuroscience; Elsevier: Amsterdam, The Netherlands, 1989; Volume 2, pp. 1872–1875.
[356]  Datta, S.; Calvo, J.; Quatrochi, J.; Hobson, J.A. Long-term enhancement of REM sleep following cholinergic stimulation. Neuroreport 1991, 2, 619–622, doi:10.1097/00001756-199110000-00017. 1756243
[357]  Steriade, M.; Contreras, D.; Amzica, F. Synchronized sleep oscillations and their paroxysmal developments. Trends Neurosci. 1994, 17, 199–208, doi:10.1016/0166-2236(94)90104-X. 7520202
[358]  Steriade, M.; Nunez, A.; Amzica, F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 1993, 13, 3266–3283. 8340807
[359]  Montplaiser, J.; Laverdière, M.; Saint-Hilaire, J.M.; Rouleau, I. Noctural sleep recording in partial epilepsy: A study with depth electrodes. J. Clin. Neurophys. 1987, 4, 383–388, doi:10.1097/00004691-198710000-00003.
[360]  Chokroverty, S. Sleep and Epilepsy. In Sleep Disorders Medicine; Chokroverty, S., Ed.; Butterworth-Heinemann: Boston, MA, USA, 1994; p. 429.
[361]  Juhasz, G.; Emri, Z.; Kekesi, K.; Pungor, K. Local perfusion of the thalamus with GABA increases sleep and induces long-lasting inhibition of somatosensory event-related potentials in cats. Neurosci. Lett. 1989, 103, 229–233, doi:10.1016/0304-3940(89)90581-8. 2771185
[362]  Feinberg, I. Effects of Maturation and Aging on Slow-Wave Sleep in Man: Implications for Neurobiology. In Slow Wave Sleep: Physiological, Pathophysiological and Functional Aspects; Wauquier, A., Dugovic, C., Radulovacki, M., Eds.; Raven Press: New York, NY, USA, 1989; pp. 31–48.
[363]  Reddy, D.S. Enhanced anticonvulsant activity of ganoxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy. J. Pharmacol. Exp. Ther. 2000, 294, 909–915. 10945840
[364]  Reddy, D.S.; Rogawski, M.A. Enhanced anticonvulsant activity of neuroactive steroids in a rat model of catamenial epilepsy. Epilepsia 2001, 42, 337–344. 11442150
[365]  Sim, J.A.; Skynner, M.J.; Herbison, A.E. Direct regulation of postnatal GnRH neurons by the progesterone derivative allopregnanolone in the mouse. Endocrinology 2001, 142, 4448–4453, doi:10.1210/en.142.10.4448. 11564709
[366]  Mennerick, S.; Zeng, C.M.; Benz, A.; Shen, W.; Izumi, Y.; Evers, A.S.; Covey, D.F.; Zorumski, C.F. Effects on gamma aminobutyric acid (GABA) (A) receptors of a neuroactive steroid that negatively modulates glutamate neurotransmission and augments GABA neurotransmission. Mol. Pharmacol. 2001, 60, 732–741. 11562435
[367]  Puia, G.; Belelli, D. Neurosteroids on our minds. Trends Pharmacol. Sci. 2001, 22, 266–267, doi:10.1016/S0165-6147(00)01706-5. 11436852
[368]  Kawata, M.; Yuri, K.; Morimoto, M. Steroid hormone effects on gene expression, neuronal structure and differentiation. Horm. Behav. 1994, 28, 477–482, doi:10.1006/hbeh.1994.1045. 7729816
[369]  Sar, M.; Stumpf, W.E.; Tappaz, M.L. Localization of 3H-estradiol in preoptic GABAergic neurons. Fed. Proc. 1983, 42, 495.
[370]  Wallis, C.J.; Luttge, W.G. Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat Brain. J. Neurochem. 1980, 34, 609–613, doi:10.1111/j.1471-4159.1980.tb11187.x. 7354335
[371]  Mansky, T.; Mestres-Ventura, P.; Wuttke, W. Involvement of GABA in the feedback action of estradiol on gonadotropin and prolactin release: Hypothalamic GABA and catecholamine turnover rates. Brain Res. 1982, 231, 353–364, doi:10.1016/0006-8993(82)90372-9. 7198927
[372]  Ramirez, V.D.; Feder, H.H.; Sawyer, C.H. The Role of Brain Catecholamines in the Regulation of LH Secretion: A Critical Inquiry. In Frontiers in Neuroendocrinology; Martini, L., Ganong, W.F., Eds.; Raven Press: New York, NY, USA, 1984; pp. 27–84.
[373]  Majewska, M.D.; Mienville, J.M.; Vicini, S. Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci. Lett. 1988, 90, 279–284, doi:10.1016/0304-3940(88)90202-9. 3138576
[374]  Mienville, J.M.; Vicini, S. Pregnenolone sulfate antagonizes GABAA receptor-mediated currents via a reduction of channel opening frequency. Brain Res. 1989, 489, 190–194, doi:10.1016/0006-8993(89)90024-3. 2472854
[375]  Kis, Z.; Budai, D.; Imre, G.; Farkas, T.; Horvath, S.; Toldi, J. The modulatory effect of estrogen on the neuronal activity in the barrel cortex of the rat. An electrophysiological study. Neuroreport 2001, 12, 2509–2512, doi:10.1097/00001756-200108080-00044. 11496139
[376]  Saleh, T.M.; Saleh, M.C. Inhibitory effect of 17 beta-estradiol in the parabrachial nucleus is mediated by GABA. Brain Res. 2001, 911, 116–124, doi:10.1016/S0006-8993(01)02699-3. 11511378
[377]  Mitsushima, D.; Hei, D.L.; Terasawa, E. gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc. Natl. Acad. Sci. USA 1994, 91, 395–399, doi:10.1073/pnas.91.1.395. 8278400
[378]  Adler, B.A.; Crowley, W.R. Evidence for gamma-aminobutyric acid modulation of ovarian hormone effects on luteinizing hormone secretion and hypothalamic catecholamine activity in the female rat. J. Endocrinol. 1986, 118, 91–97, doi:10.1210/endo-118-1-91.
[379]  Celotti, F.; Apud, J.A.; Melcangi, R.C.; Masotto, C.; Tappaz, M.; Racagni, G. Endocrine modulation of gamma-aminobutyric acidergic innervation in the rat fallopian tube. Endocrinology 1986, 118, 334–339, doi:10.1210/endo-118-1-334. 3510120
[380]  Terasawa, E. Mechanisms Controlling the Onset of Puberty in Primates: The Role of GABAergic Neurons. In The Neurobiology of Puberty; Plant, T.M., Lee, P.A., Eds.; J. Endocrinol. Limited: Bristol, UK, 1995; pp. 139–151.
[381]  Mayo, W.; Dellu, F.; Robel, P.; Cherkaoui, J.; le Moal, M.; Baulieu, E.E.; Simon, H. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. 1993, 607, 324–328, doi:10.1016/0006-8993(93)91524-V. 8386975
[382]  Garcia-Segura, L.M.; Chowen, J.A.; Due?as, M.; Torres-Aleman, I.; Naftolin, F. Gonadal steroids as promoters of neuro-glial plasticity. Psychoneuroendocrinology 1994, 19, 445–453, doi:10.1016/0306-4530(94)90031-0. 7938345
[383]  Sexual Differentiation of the Brain; Matsumoto, A., Ed.; CRC Press: Boca Raton, FL, USA, 2000.
[384]  Gould, E.; Woolley, C.S.; Frankfurt, M.; McEwen, B.S. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 1990, 10, 1286–1291. 2329377
[385]  Frankfurt, M.; McEwen, B.S. Estrogen increases axodendritic synapses in the VMN of rats after ovariectomy. Neuroreport 1991, 2, 380–382, doi:10.1097/00001756-199107000-00006. 1912470
[386]  Gur, R.C.; Gur, R.E.; Obrist, W.D.; Skolnick, B.E.; Reivich, M. Age and regional cerebral blood flow at rest and during cognitive activity. Arch. Gen. Psychiatry 1987, 44, 617–621, doi:10.1001/archpsyc.1987.01800190037006. 3606327
[387]  Thomas, D.J.; Marshall, J.; Ross Russell, R.W.; Wetherly-Mein, G.; Du Boulay, G.H.; Pearson, T.C.; Syman, L.; Zilkha, E. Effects of haematocrit on cerebral blood-flow in man. Lancet 1977, 2, 941–943. 72286
[388]  Vriens, E.M.; Kraaier, V.; Musbach, M.; Wiencke, G.H.; van Huffelen, A.C. Transcranial pulse Doppler measurements of blood velocity in the middle cerebral artery: Reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med. Biol. 1989, 15, 1–8. 2672503
[389]  Kastrup, A.; Thomas, C.; Hartmann, C.; Schabet, M. Sex dependency of cerebrovascular CO2 reactivity in normal subjects. Stroke 1997, 28, 2353–2356, doi:10.1161/01.STR.28.12.2353. 9412613
[390]  Kastrup, A.; Dichgans, J.; Niemeier, M.; Schabet, M. Changes of cerebrovascular CO2 reactivity during normal aging. Stroke 1998, 29, 1311–1314, doi:10.1161/01.STR.29.7.1311. 9660378
[391]  Frankfurt, M.; Fuchs, E.; Wuttke, W. Sex differences in gamma-aminobutyric acid and glutamate concentrations in discrete rat brain nuclei. Neurosci. Lett. 1984, 50, 245–250, doi:10.1016/0304-3940(84)90493-2. 6149503
[392]  Grattan, D.R.; Selmanoff, M. Sex differences in the activity of gamma-aminobutyric acidergic neurons in the rat hypothalamus. Brain Res. 1997, 775, 244–249, doi:10.1016/S0006-8993(97)01069-X. 9439853
[393]  Herbison, A.E.; Robinson, J.E.; Skinner, D.C. Distribution of estrogen receptor- immunoreactive cells in the preoptic area of the ewe: Co-localization with glutamic acid decarboxylase but not luteinizing hormone-releasing hormone. Neuroendocrinology 1993, 57, 751–759, doi:10.1159/000126433. 8367037
[394]  Vijayan, E.; McCann, S.M. The effects of intraventricular injection of gamma-aminobutyric acid (GABA) on prolactin and gonadotropin release in conscious female rats. Brain Res. 1978, 155, 35–43, doi:10.1016/0006-8993(78)90303-7. 688015
[395]  Manev, H.; Perici?, D. Sex difference in the turnover of GABA in the rat substantia nigra. J. Neural. Transm. 1987, 70, 321–328, doi:10.1007/BF01253606. 3681288
[396]  McEwen, B.S. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol. Sci. 1991, 12, 141–147, doi:10.1016/0165-6147(91)90531-V. 2063480
[397]  Sagrillo, C.A.; Selmanoff, M. Castration decreased mRNA levels encoding glutamic acid decarboxylase within that region of the medial preoptic area which coincides with the sexually dimorphic nucleus (SDN-mPOA). Soc. Neurosci. Abst. 1994, 20, 994.
[398]  Woolley, D.; Timiras, P.S. The gonad-brain relationship: Effects of female sex hormones on electroshock convulsions in the rat. Endocrinology 1962, 70, 196–209, doi:10.1210/endo-70-2-196. 14008291
[399]  B?ckstr?m, T. Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurol. Scand. 1976, 54, 321–347, doi:10.1111/j.1600-0404.1976.tb04363.x. 973554
[400]  Logothetis, J.; Harner, R.; Morrell, F.; Torres, F. The role of estrogens in catamenial exacerbation of epilepsy. Neurology 1959, 9, 352–360, doi:10.1212/WNL.9.5.352. 13657294
[401]  Wray, S.; Fueshko, S.M.; Kusano, K.; Gainer, H. GABAergic neurons in the embryonic olfactory pit/vomeronasal organ: Maintenance of functional GABAergic synapses in olfactory explants. Dev. Biol. 1996, 180, 631–645, doi:10.1006/dbio.1996.0334. 8954733
[402]  Tobet, S.A.; Chickering, T.W.; King, J.C.; Stopa, E.G.; Kim, K.; Kuo-Leblank, V.; Schwarting, G.A. Expression of gamma-aminobutyric acid and gonadotropin-releasing hormone during neuronal migration through the olfactory system. Endocrinology 1996, 137, 5415–5420, doi:10.1210/en.137.12.5415. 8940365
[403]  Fueshko, S.M.; Key, S.; Wray, S. GABA inhibits migration of luteinizing hormone-releasing hormone neurons in embryonic olfactory explants. J. Neurosci. 1998, 18, 2560–2569. 9502815
[404]  Shepherd, G.; Greer, C. Olfactory Bulb. In The Synaptic Organization of the Brain; Shepherd, G., Ed.; Oxford Univ. Press: New York, NY, USA, 1990; pp. 133–169.
[405]  Trombley, P.Q.; Shepherd, G.M. Synaptic transmission and modulation in the olfactory bulb. Curr. Opin. Neurobiol. 1993, 3, 540–547, doi:10.1016/0959-4388(93)90053-2. 8219719
[406]  Nakanishi, S. Metabotropic glutamate receptors: Synaptic transmission, modulation and plasticity. Neuron 1994, 13, 1031–1037, doi:10.1016/0896-6273(94)90043-4. 7946343
[407]  Esfandyari, T.; Camilleri, M.; Busciglio, I.; Burton, D.; Baxter, K.; Zinsmeister, A.R. Effects of a cannabinoid receptor agonist on colonic motor and sensory functions in humans: A randomized, placebo-controlled study. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 294, G137–G145.
[408]  Ralevic, V.; Kendall, D.A. Cannabinoid modulation of perivascular sympathetic and sensory neurotransmission. Curr. Vasc. Pharmacol. 2009, 7, 15–25, doi:10.2174/157016109787354114. 19149636
[409]  Hoffman, A.F.; Lupica, C.R. Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci. 2000, 20, 2470–2479. 10729327
[410]  Sullivan, J.M. Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn. Mem. 2000, 7, 132–139, doi:10.1101/lm.7.3.132. 10837502
[411]  Egerton, A.; Allison, C.; Brett, R.R.; Pratt, J.A. Cannabinoids and prefrontal cortical function: Insights from preclinical studies. Neurosci. Biobehav. Rev. 2006, 30, 680–695, doi:10.1016/j.neubiorev.2005.12.002. 16574226
[412]  Matsuda, L.A.; Lolait, S.J.; Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990, 346, 561–564, doi:10.1038/346561a0. 2165569
[413]  Martin, B.R.; Welch, S.P.; Abood, M.E. Progress toward understanding the cannabinoid receptor and its second messenger systems. Adv. Pharmacol. 1994, 25, 341–397. 8204506
[414]  Martin, B.R. Marijuana. In Encyclopedia of Neuroscience; Adelman, G., Smith, B.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 1101–1105.
[415]  L?scher, W. 3-Mercaptopropionic acid: Convulsant properties, effects on enzymes of the gamma-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem. Pharmacol. 1979, 28, 1397–1407, doi:10.1016/0006-2952(79)90443-X. 444305
[416]  Revuelta, A.V.; Cheney, D.L.; Wood, P.L.; Costa, E. GABAergic mediation in the inhibition of hippocampal acetylcholine turnover rate elicited by delta 9-tetrahydrocannabinol. Neuropharmacology 1979, 18, 525–530, doi:10.1016/0028-3908(79)90095-9. 481705
[417]  Cannabinoids as Therapeutic Agents; Mechoulam, R., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 137–138.
[418]  Leader, J.P.; Koe, B.K.; Weissman, A. GABA-like actions of levonantradol. J. Clin. Pharmacol. 1981, 21, 262S–270S, doi:10.1002/j.1552-4604.1981.tb02604.x. 6271832
[419]  Costa, E.; Cheney, D.L.; Murray, T.F. Levonantradol-induced inhibition of acetylcholine turnover in rat hippocampus and striatum. J. Clin. Pharmacol. 1981, 21, 256S–261S, doi:10.1002/j.1552-4604.1981.tb02603.x. 6271831
[420]  Edery, H.; Gottesfeld, Z. The gamma-aminobutyric acid system in rat cerebellum during cannabinoid-induced cataleptoid state. Br. J. Pharmacol. 1975, 54, 406–408, doi:10.1111/j.1476-5381.1975.tb07584.x. 1172451
[421]  Feeney, D.M. Marihuana and epilepsy: Paradoxical anticonvulsant and convulsant effects. Adv. Biosci. 1978, 23, 643–657.
[422]  Pacheco, M.A.; Ward, S.J.; Childers, S.R. Identification of cannabinoid receptors in cultures of rat cerebellar granule cells. Brain Res. 1993, 603, 102–110, doi:10.1016/0006-8993(93)91304-B. 8384043
[423]  Pertwee, R.G. The Central Neuropharmocology of Psychotropic Cannabinoids. In Psychotropic Drugs of Abuse; Balfour, D.J.K., Ed.; Pergamon Press: New York, NY, USA, 1990; pp. 355–429.
[424]  Wickens, A.P.; Pertree, R.G. Effect of delta-9-tetrahydrocannabinol on circling in rats induced by intranigral muscimol administration. Eur. J. Pharmocol. 1995, 282, 251–254, doi:10.1016/0014-2999(95)00346-M.
[425]  Pertwee, R.G.; Greentree, S.G.; Swift, P.A. Drugs which stimulate or facilitate central GABAergic transmission interact synergistically with delta-9-tetrahydrocannabinol to produce marked catalepsy in mice. Neuropharmacology 1988, 27, 1265–1270, doi:10.1016/0028-3908(88)90029-9. 2854226
[426]  Shen, M.; Piser, T.M.; Seybold, V.S.; Thayer, S.A. Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J. Neurosci. 1996, 16, 4322–4334. 8699243
[427]  Joy, J.E.; Watson, S.J., Jr.; Benson, J.A., Jr. Marijuana and Medicine; National Academies Press: Washington, DC, USA, 2000; p. 50.
[428]  The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects; Agurell, S., Dewey, W.L., Willtette, R.D., Eds.; Academic Press: Orlando, FL, USA, 1984; p. 691.
[429]  Pertwee, R.G.; Browne, S.E.; Ross, T.M.; Stretton, C.D. An investigation of the involvement of GABA in certain pharmacological effects of delta-9-tetrahydrocannabinol. Pharmacol. Biochem. Behav. 1991, 40, 581–585, doi:10.1016/0091-3057(91)90366-A. 1666920
[430]  Martin, B.R. Cellular effects of cannabinoids. Pharmacol. Rev. 1986, 38, 45–74. 2872689
[431]  Consroe, P.; Mechoulam, R. Anticonvulsant and neurotoxic effects of tetrahydrocannabinol stereoisomers. NIDA Res. Monogr. 1987, 79, 59–66. 2830538
[432]  Zygmunt, P.M.; Andersson, D.A.; Hogestatt, E.D. Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J. Neurosci. 2002, 22, 4720–4727. 12040079
[433]  Cronholm, B. Phantom limb in amputees; a study of changes in the integration of centripetal impulses with special reference to referred sensations. Acta Psychiatr. Neurol. Scand. Suppl. 1951, 72, 1–310. 14837770
[434]  Kew, J.J.; Halligan, P.W.; Marshall, J.C.; Passingham, R.E.; Rothwell, J.C.; Ridding, M.C.; Marsden, C.D.; Brooks, D.J. Abnormal access of axial vibrotactile input to deafferented somatosensory cortex in human upper limb amputees. J. Neurophysiol. 1997, 77, 2753–2764. 9163390
[435]  Knecht, S.; Henningsen, H.; H?hling, C.; Elbert, T.; Flor, H.; Pantev, C.; Taub, E. Plasticity of plasticity? Changes in the pattern of perceptual correlates of reorganization after amputation. Brain 1998, 121, 717–724, doi:10.1093/brain/121.4.717. 9577396
[436]  Spitzer, M.; B?hler, P.; Weisbrod, M.; Kischka, U. A neural network model of phantom limbs. Biol. Cybern. 1995, 72, 197–206, doi:10.1007/BF00201484. 7703296
[437]  Ojemann, J.G.; Silbergeld, D.L. Cortical stimulation mapping of phantom limb rolandic cortex. Case Report. J. Neurosurg. 1995, 82, 641–644, doi:10.3171/jns.1995.82.4.0641. 7897528
[438]  Jones, E.G.; Pons, T.P. Thalamic and brain stem contributions to large-scale plasticity of primate somatosensory cortex. Science 1998, 282, 1121–1125, doi:10.1126/science.282.5391.1121. 9804550
[439]  Craig, A.D.; Reiman, E.M.; Evans, A.; Bushnell, M.C. Functional imaging of an illusion of pain. Nature 1996, 384, 258–260, doi:10.1038/384258a0. 8918874
[440]  Borsook, D.; Becerra, L.; Fishman, S.; Edwards, A.; Jennings, C.L.; Stojanovic, M.; Papinicolas, L.; Ramachandran, V.S.; Gonzales, R.G.; Breiter, H. Acute plasticity in the human somatosensory cortex following amputation. Neuroreport 1998, 9, 1013–1017, doi:10.1097/00001756-199804200-00011. 9601659
[441]  Flor, H.; Elbert, T.; Knecht, S.; Wienbruch, C.; Pantev, C.; Birbaumers, N.; Larbig, W.; Taub, E. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 1995, 375, 482–484, doi:10.1038/375482a0. 7777055
[442]  Zilstorff, K. Parosmia. J. Laryngol. Otol. 1966, 80, 1102–1104, doi:10.1017/S0022215100066457. 5927746
[443]  Zilstorff, K.; Herbild, O. Parosmia. Acta Otolaryngol. Suppl. 1979, 360, 40–41. 287347
[444]  Korczyn, A.D. Hallucination in Parkinson’s disease. Lancet 2001, 358, 1031–1032, doi:10.1016/S0140-6736(01)06230-4. 11589931
[445]  Gsell, W.; Strein, I.; Krause, U.; Riederer, P. Neurochemical abnormalities in Alzheimer’s disease and Parkinson’s disease: A comparative review. J. Neural. Transm. 1997, 51, 145–159.
[446]  Cummings, J.L. Cholinesterase inhibitors: Expanding applications. Lancet 2000, 356, 2024–2025, doi:10.1016/S0140-6736(00)03393-6. 11145482
[447]  Haussermann, P.; Ceballos-Baumann, A.; Reinbold, H.; Goecker, P.; Schr?der, S. Applications of cholinesterase inhibitors. Lancet 2001, 357, 1039. 11293614
[448]  Creese, I.; Burt, D.; Snyder, S.H. Biochemical Actions of Neuroleptic Drugs: Focus on Dopamine Receptor. In Handbook of Psycho-Pharmacology; Iverson, L.L., Iverson, S.D., Snyder, S.H., Eds.; Plenum Press: New York, NY, USA, 1978; Volume 10, pp. 37–89.
[449]  Goetz, C.G.; Vogel, C.; Tanner, C.M.; Stebbins, G.T. Early dopaminergic drug-induced hallucinations in parkinsonian patients. Neurology 1998, 51, 811–814, doi:10.1212/WNL.51.3.811. 9748031
[450]  Feinberg, A.P.; Snyder, S.H. Phenothiazine drugs: Structure-activity relationships explained by a conformation that mimics dopamine. Proc. Natl. Acad. Sci. USA 1975, 72, 1899–1903, doi:10.1073/pnas.72.5.1899. 239403
[451]  Kamiya, Y.; Andoh, T.; Furuya, R.; Hattori, S.; Watanabe, I.; Sasaki, T.; Ito, H.; Okumura, F. Comparison of the effects of convulsant and depressant barbiturate stereoisomers on AMPA-type glutamate receptors. Anesthesiology 1999, 90, 1704–1713, doi:10.1097/00000542-199906000-00028. 10360870
[452]  Yokoro, C.M.; Pesquero, S.M.; Turchetti-Maia, R.M.; Francischi, J.N.; Tatsuo, M.A. Acute phenobarbital administration induces hyperalgesia: Pharmacological evidence for the involvement of supraspinal GABA-A receptors. Braz. J. Med. Biol. Res. 2001, 34, 397–405. 11262592
[453]  Akk, G.; Steinbach, J.H. Activation and block of recombinant GABA(A) receptors by pentobarbitone: A single channel study. Br. J. Pharmacol. 2000, 130, 249–258, doi:10.1038/sj.bjp.0703335. 10807661
[454]  Ortho-McNeil, H. Thioridazine. In Physicians Desk Reference; Medical Economics: Montvale, NJ, USA, 2002; pp. 2533–2534.
[455]  Mylan, T. Haloperidol. In Physicians Desk Reference; Medical Economics: Montvale, NJ, USA, 2002; pp. 2289–2290.
[456]  Fenwick, P. The behavioral treatment of epilepsy generation and inhibition of seizures. Neurol. Clin. 1994, 12, 175–202. 8183209
[457]  Pritchard, P.; Holmstrom, V.; Giacinto, J. Self-abatement of complex partial seizures. Ann. Neurol. 1985, 18, 265–267, doi:10.1002/ana.410180217. 4037767
[458]  Efron, R. The effect of olfactory stimuli in arresting uncinate fits. Brain 1956, 79, 267–281, doi:10.1093/brain/79.2.267. 13364083
[459]  Iwata, B.A.; Lorentzson, A.M. Operant control of seizure-like behavior in an institutionalized retarded adult. Behav. Ther. 1976, 7, 247–251, doi:10.1016/S0005-7894(76)80283-3.
[460]  Gardner, J.E. Behavior therapy treatment approach to a psychogenic seizure case. J. Consult. Psychol. 1967, 31, 209–212, doi:10.1037/h0024446. 6042058
[461]  Sterman, M.B. Neurophysiological and Clinical Studies of Sensori-Motor EEG Biofeedback Training: Some Effects of Epilepsy. In Biofeedback: Behavior Medicine; Birk, L., Ed.; Grune & Stratton: Boston, MA, USA, 1973; pp. 507–526.
[462]  Dahl, J.; Melin, L.; Brorson, L.O.; Schollin, J. Effects of a broad-spectrum behavior modification treatment program on children with refractory epileptic seizures. Epilepsia 1985, 26, 303–309, doi:10.1111/j.1528-1157.1985.tb05654.x. 4006888
[463]  Dahl, J.; Melin, L.; Lund, L. Effects of a contingent relaxation treatment program on adults with refractory epileptic seizures. Epilepsia 1987, 28, 125–132, doi:10.1111/j.1528-1157.1987.tb03637.x. 3545797
[464]  Tassinari, C.A. Suppression of focal spikes by somatosensory stimuli. Electroencephalogr. Clin. Neurophysiol. 1968, 25, 574–578, doi:10.1016/0013-4694(68)90237-X. 4178752
[465]  Gellhorn, E. Effect of afferent impulses on cortical suppressor areas. J. Neurophysiol. 1947, 10, 125–132. 20291839
[466]  Barker, S.H.; Gellhorn, E. Influence of suppressor areas on afferent impulses. J. Neurophysiol. 1947, 10, 133–138. 20291840
[467]  Mostofsky, D.I.; Balaschak, B.A. Psychobiological control of seizures. Psychol. Bull. 1977, 84, 723–750, doi:10.1037/0033-2909.84.4.723. 19800
[468]  Morrell, M.J. Differential diagnosis of seizures. Neurol. Clin. 1993, 11, 737–754. 8272029
[469]  Alper, K. Nonepileptic seizures. Neurol. Clin. 1994, 12, 153–173. 8183208
[470]  Alper, K.R.; Devinsky, O.; Perrine, K.; Vasquez, B.; Luciano, D. Psychiatric classification of nonconversion nonepileptic seizures. Arch. Neurol. 1995, 52, 199–201, doi:10.1001/archneur.1995.00540260105025. 7848132
[471]  Altman, H.; Collins, M.; Mundy, P. Subclinical hallucinations and delusions in nonpsychotic adolescents. J. Child Psychol. Psychiatry 1997, 38, 413–420, doi:10.1111/j.1469-7610.1997.tb01526.x. 9232486
[472]  Guberman, A. Psychogenic pseudoseizures in non-epileptic patients. Can. J. Psychiatry 1982, 27, 401–404. 7116280
[473]  Pakalnis, A.; Drake, M.E.; Phillips, B. Neuropsychiatric aspects of psychogenic status epilepticus. Neurology 1991, 41, 1104–1106, doi:10.1212/WNL.41.7.1104. 2067641
[474]  Merlis, J.K. Reflex Epilepsy. In Handbook of Clinical Neurology: The Epilepsies; Vinken, J.P., Bruyn, G.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1974; Volume 15, pp. 450–456.
[475]  Forster, F.M. Behavioral Therapy of Reflex Epilepsy: Maintenance or Reinforcement of Therapy. In Reflex Epilepsy, Behavior Therapy and Conditional Reflexes; Forster, F.M., Ed.; C.C. Thomas: Springfield, IL, USA, 1977; pp. 73–86.
[476]  Rotaccio, A.L. Reflex seizures. Neurol. Clin. 1994, 12, 57–83. 8183213
[477]  Jeavons, P.M.; Harding, G.F. Photosensitive Epilepsy: A Review of the Literature and a Study of 460 Patients; Heineman: London, UK, 1975.
[478]  Jeavons, P.M. Photosensitive Epilepsy. In A Textbook of Epilepsy, 2nd ed.; Laidlaw, J., Richens, A., Eds.; Churchill Livingstone: New York, NY, USA, 1982; pp. 195–210.
[479]  Behrman, S.; Wyke, B.D. Vestibulogenic seizures. Brain 1958, 81, 529–541, doi:10.1093/brain/81.4.529. 13618450
[480]  Cantor, F.K. Vestibular-temporal lobe connections demonstrated by induced seizures. Neurology 1971, 21, 507–516, doi:10.1212/WNL.21.5.507. 5314329
[481]  Critchley, M. Musicogenic epilepsy. Brain 1937, 60, 13–27, doi:10.1093/brain/60.1.13.
[482]  Abenson, M.H. Epileptic fits provoked by taste. Br. J. Psychiatry 1969, 115, 123. 5781956
[483]  Tedrus, G.M.; Albertin, M.C.; Odashima, N.S.; Fonseca, C. Partial motor seizures induced by movement in diabetic patients. Arq. Neuropsiquiatr. 1991, 49, 442–446. (in Portuguese).
[484]  Penfield, W.; Erickson, T.C. Epilepsy and Cerebral Localization: A Study of the Mechanism, Treatment and Prevention of Epileptic Seizures; C.C. Thomas: Springfield, IL, USA, 1941.
[485]  Cirignotta, F.; Marcacci, G.; Lugaresi, E. Epileptic seizures precipitated by eating. Epilepsia 1977, 18, 445–449, doi:10.1111/j.1528-1157.1977.tb04990.x. 412665
[486]  Fiol, M.E.; Leppik, I.E.; Pretzel, K. Eating epilepsy. EEG and clinical study. Epilepsia 1986, 27, 441–445, doi:10.1111/j.1528-1157.1986.tb03565.x. 3720704
[487]  Alajouahine, T.; Gastaut, H. Synkinesis-startle and epilepsy startle triggered by unexpected sensory and sensitive factors. I. Anatomical and clinical data on 15 cases. Rev. Neurol. (Paris) 1995, 93, 29–41. (in French).
[488]  Bickford, R.G.; Whelan, J.L.; Klass, D.W.; Corbin, K.B. Reading epilepsy: Clinical and electroencephalographic studies of a new syndrome. Trans. Am. Neurol. Assoc. 1956, 81, 100–102.
[489]  Ingvar, D.H.; Nyman, G.E. Epilepsia arithmetices. A new psychological trigger mechanism in a case of epilepsy. Neurology 1962, 12, 282–287, doi:10.1212/WNL.12.4.282.
[490]  Clementi, A. Storicizzazione circoscritta del lobo piriforme del cervello ed epilessia sperimentale da stimoli odoriferi. Arch. Fisiol. 1931, 30, 12.
[491]  Kasteleijn-Nolst Trenité, D.G. Photosensitivity in epilepsy. Electrophysiological and clinical correlates. Acta Neurol. Scand. Suppl. 1989, 125, 3–149. 2618589
[492]  Doose, H.; Gerken, H.; Hien-V?lpel, K.F. Genetics of photosensitive epilepsy. Neuropediatrie 1969, 1, 56–73, doi:10.1055/s-0028-1091864.
[493]  Lesser, R.P. Psychogenic Seizures. In Recent Advances in Epilepsy 2; Pedley, T.A., Meldrum, B.J., Eds.; Churchill, Livingston: Edinburgh, UK, 1985; pp. 273–296.
[494]  Trimble, M. Pseudo problems pseudoseizures. Br. J. Hosp. Med. 1983, 29, 326–333. 6871521
[495]  Ramani, V. Intensive Monitoring of Psychogenic Seizures, Aggression and Dyscontrol Syndromes. In Advances in Neurology; Gumnit, R., Ed.; Raven Press: New York, NY, USA, 1986; Volume 46, pp. 203–217.
[496]  Betts, T. Pseudoseizures: Seizures that are not epilepsy. Lancet 1990, 336, 163–164, doi:10.1016/0140-6736(90)91673-X. 1973484
[497]  Gates, J.R.; Luciano, D.; Devinsky, O. The Classification and Treatment of Nonepileptic Events. In Epilepsy and Behavior; Devinsky, O., Theodore, W.H., Eds.; Wiley-Liss: New York, NY, USA, 1991; Volume 12, pp. 251–263.
[498]  Lesser, R.P.; Lueders, H.; Dinner, D.S. Evidence for epilepsy is rare in patients with psychogenic seizures. Neurology 1983, 33, 502–504, doi:10.1212/WNL.33.4.502. 6682199
[499]  Lelliott, P.T.; Fenwick, P. Cerebral pathology in pseudoseizures. Acta Neurol. Scand. 1991, 83, 129–132, doi:10.1111/j.1600-0404.1991.tb04661.x. 1902011
[500]  Pizzo, P.A. Lessons in pain relief – a personal postgraduate experience. N. Engl. J. Med. 2013, 369, 1092–1093, doi:10.1056/NEJMp1306467. 24047058
[501]  Jaspers, K. General Psychopathology, 7th ed. ed.; Manchester University Press: Manchester, UK, 1963.
[502]  Greenberg, M.S. Olfactory Hallucinations. In Science of Olfaction; Serby, M.J., Chobor, K.L., Eds.; Springer: New York, NY, USA, 1992; pp. 467–499.
[503]  Tilley, H. hree cases of parosmia; causes, treatment, etc.. Lancet 1895, 146, 907–908, doi:10.1016/S0140-6736(01)47039-5.
[504]  Allaez, J.; Dongiers, S. EEG correlations of olfactory hallucinations. Am. Med. Psychol. 1955, 110, 665–667.
[505]  Fahn, S.; Bressman, S.B.; Marsden, C.D. Classification of dystonia. Adv. Neurol. 1998, 78, 1–10. 9841474
[506]  Fahn, S. Atypical Tremors, Rare Tremors and Unclassified Tremors. In Movement Disorders: Tremor; Findley, L.J., Capildeo, R., Eds.; Oxford University Press: New York, NY, USA, 1984; pp. 431–433.
[507]  Jackson, J.H. Epileptiform convulsions from cerebral disease. Trans. Int. Med. Congr. 1881, 2, 6–19.
[508]  Florence, S.L.; Taub, H.B.; Kaas, J.H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 1998, 282, 1117–1121, doi:10.1126/science.282.5391.1117. 9804549

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133